423 research outputs found

    ONE-TIME ORDER INVENTORY MODEL FOR DETERIORATING AND SHORT MARKET LIFE ITEMS WITH TRAPEZOIDAL TYPE DEMAND RATE

    Get PDF
    Determining the end of the sales period for a one-time order inventory policy for technology products that see rapid innovation and improvement, such as smartphones, is a vital decision. While the market life cycle is short, with long lead times and expensive deliveries. Such situations can force the number of orders to be few or even only once. Products with the latest technology consist of many components that allow for deterioration from the start. This study discusses the effect of the market life cycle, as indicated by the trapezoidal demand rate, on deteriorating item inventory policies. This study will provide new insights into inventory policy. Mathematical models with a non-linear generalized reduced gradient approach can find the optimal end of the selling period and the order size to achieve maximum profit. A sensitivity analysis showed several findings that provide insight for management

    An EPQ model with trapezoidal demand under volume flexibility

    Get PDF
    In this paper, we explored an economic production quantity model (EPQ) model for finite production rate and deteriorating items with time-dependent trapezoidal demand. The objective of the model under study is to determine the optimal production run-time as well as the number of production cycle in order to maximize the profit. Numerical example is also given to illustrate the model and sensitivity analyses regarding various parameters are performed to study their effects on the optimal policy

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    Production lot size models for perishable seasonal products

    Get PDF
    Seasonal items like fruits, fish, winter cosmetics, fashion apparel, etc. generally exhibits different demand patterns at various times during the season. Production and inventory planning must reflect this property for cost effectiveness and optimization of resources. This paper presents two production-inventory models for perishable seasonal products that minimize total inventory costs. The models obtains optimal production run time and optimal production quantity for cases when the production rate is constant and when it is allowed to vary with demand. The products are assumed to deteriorate at an exponential rate and demand for them follows a three-phase ramp type pattern during the season. Numerical examples and sensitivity analysis are carried out. Production run time and production quantity obtained by the model were found to be independent of cost parameters. The variable production rate strategy was also found to give lower inventory costs and production quantity than the constant production rate strategy

    An optimal EOQ model for perishable products with varying demand pattern

    Get PDF
    The demand pattern for most perishable products varies during their life cycle in the market. These variations must be properly reflected in inventory management in order to prevent unnecessary stock-out or excess inventory with associated increase in cost. In this paper, a multi-period economic order quantity (EOQ) model for managing the inventory of perishable items having varying demand pattern is presented. The model was formulated using a general ramp-type demand function that allows three-phase variation in demand pattern. These phases represent the growth, the steady and the decline phases commonly experienced by the demand for most products during their life cycle in the market. The model generates replenishment policies that guarantees optimal inventory cost for all the phases. Numerical experiments and sensitivity analysis were carried out to demonstrate the suitability of the model for a wide range of seasonal products. Result of the experiments revealed that the points at which demand pattern changes are critical points in managing inventory of products with ramp type demand

    A Two-Warehouse Model for Deteriorating Items with Holding Cost under Particle Swarm Optimization

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Particle Swarm Optimization (PSO) having a ramp type demands with the effects of inflation with two-warehouse facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Particle Swarm Optimization (PSO) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Particle Swarm Optimization (PSO). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Optimal Replenishment Policy for Weibull-Distributed Deteriorating Items with Trapezoidal Demand Rate and Partial Backlogging

    Get PDF
    An inventory model for Weibull-distributed deteriorating items is considered so as to minimize the total cost per unit time in this paper. The model starts with shortage, allowed partial backlogging, and trapezoidal demand rate. By analyzing the model, an efficient solution procedure is proposed to determine the optimal replenishment and the optimal order quantity and the average total costs are also obtained. Finally, numerical examples are provided to illustrate the theoretical results and a sensitivity analysis of the major parameters with respect to the stability of optimal solution is also carried out

    Optimal control of decoupling point with deteriorating items

    Get PDF
    Purpose: The aim of this paper is to develop a dynamic model to simultaneously determine the optimal position of the decoupling point and the optimal path of the production rate as well as the inventory level in a supply chain. With the objective to minimize the total cost of the deviation from the target setting, the closed forms of the optimal solution are derived over a finite planning horizon with deterioration rate under time-varying demand rate. Design/methodology/approach: The Pontryagin's Maximum Principle is employed to explore the optimal position of decoupling point and the optimal production and inventory rate for the proposed dynamic models. The performances of parameters are illustrated through analytical and numerical approaches. Findings: The results denote that the optimal production rate and inventory level are closely related to the target setting which are highly dependent on production policy; meanwhile the optimal decoupling point is exist and unique with the fluctuating of deteriorating rate and product life cycle. The further analyses through both mathematic and numerical approaches indicate that the shorten of product life cycle shifts the optimal decoupling point forward to the end customer meanwhile a backward shifting appears when the deterioration rate increase. Research limitations/implications: There is no shortage allowed and the replacement policy is not taken into account. Practical implications: Solutions derived from this study of the optimal production-inventory plan and decoupling point are instructive for operation decision making. The obtained knowledge about the performance of different parameters is critical to deteriorating supply chains management. Originality/value: Many previous models of the production-inventory problem are only focused on the cost. The paper introduces the decoupling point control into the production and inventory problem such that a critical element-customer demand, can be taken into account. And the problem is solved as dynamic when the production rate, inventory level and the position of the decoupling point are all regarded as decision variables.Peer Reviewe

    Replenishment Policy for Pareto Type Deteriorating Items With Quadratic Demand under Partial Backlogging And Delay in Payments

    Get PDF
    The present model develops a replenishment policy in which the demand rate is quadratic polynomial-time function. Deterioration rate is a Pareto type function. Shortages are partial backlogging and delay in payments are allowed. Holding cost is a linear function of time. The backlogging rate varies with the waiting duration for the next replenishment. The present paper determines the optimal policy for the individual by minimizing the total cost. The optimization procedure has been explained by a numerical example and a detailed sensitivity analysis of the optimal solution has been carried out to display the effect of various parameters
    • …
    corecore