21,871 research outputs found

    Averaged Iterative Water-Filling Algorithm: Robustness and Convergence

    Full text link
    The convergence properties of the Iterative water-filling (IWF) based algorithms have been derived in the ideal situation where the transmitters in the network are able to obtain the exact value of the interference plus noise (IPN) experienced at the corresponding receivers in each iteration of the algorithm. However, these algorithms are not robust because they diverge when there is it time-varying estimation error of the IPN, a situation that arises in real communication system. In this correspondence, we propose an algorithm that possesses convergence guarantees in the presence of various forms of such time-varying error. Moreover, we also show by simulation that in scenarios where the interference is strong, the conventional IWF diverges while our proposed algorithm still converges

    Robustness of proxy-based climate field reconstruction methods

    Get PDF
    We present results from continued investigations into the fidelity of covariance-based climate field reconstruction (CFR) approaches used in proxy-based climate reconstruction. Our experiments employ synthetic “pseudoproxy” data derived from simulations of forced climate changes over the past millennium. Using networks of these pseudoproxy data, we investigate the sensitivity of CFR performance to signal-to-noise ratios, the noise spectrum, the spatial sampling of pseudoproxy locations, the statistical representation of predictors used, and the diagnostic used to quantify reconstruction skill. Our results reinforce previous conclusions that CFR methods, correctly implemented and applied to suitable networks of proxy data, should yield reliable reconstructions of past climate histories within estimated uncertainties. Our results also demonstrate the deleterious impact of a linear detrending procedure performed recently in certain CFR studies and illustrate flaws in some previously proposed metrics of reconstruction skill

    Building Proteins in a Day: Efficient 3D Molecular Reconstruction

    Full text link
    Discovering the 3D atomic structure of molecules such as proteins and viruses is a fundamental research problem in biology and medicine. Electron Cryomicroscopy (Cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D structures from 2D images. This paper addresses the challenging problem of 3D reconstruction from 2D Cryo-EM images. A new framework for estimation is introduced which relies on modern stochastic optimization techniques to scale to large datasets. We also introduce a novel technique which reduces the cost of evaluating the objective function during optimization by over five orders or magnitude. The net result is an approach capable of estimating 3D molecular structure from large scale datasets in about a day on a single workstation.Comment: To be presented at IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore