9,698 research outputs found

    Beamforming and Rate Allocation in MISO Cognitive Radio Networks

    Full text link
    We consider decentralized multi-antenna cognitive radio networks where secondary (cognitive) users are granted simultaneous spectrum access along with license-holding (primary) users. We treat the problem of distributed beamforming and rate allocation for the secondary users such that the minimum weighted secondary rate is maximized. Such an optimization is subject to (1) a limited weighted sum-power budget for the secondary users and (2) guaranteed protection for the primary users in the sense that the interference level imposed on each primary receiver does not exceed a specified level. Based on the decoding method deployed by the secondary receivers, we consider three scenarios for solving this problem. In the first scenario each secondary receiver decodes only its designated transmitter while suppressing the rest as Gaussian interferers (single-user decoding). In the second case each secondary receiver employs the maximum likelihood decoder (MLD) to jointly decode all secondary transmissions, and in the third one each secondary receiver uses the unconstrained group decoder (UGD). By deploying the UGD, each secondary user is allowed to decode any arbitrary subset of users (which contains its designated user) after suppressing or canceling the remaining users.Comment: 32 pages, 6 figure

    Controlled Matching Game for Resource Allocation and User Association in WLANs

    Full text link
    In multi-rate IEEE 802.11 WLANs, the traditional user association based on the strongest received signal and the well known anomaly of the MAC protocol can lead to overloaded Access Points (APs), and poor or heterogeneous performance. Our goal is to propose an alternative game-theoretic approach for association. We model the joint resource allocation and user association as a matching game with complementarities and peer effects consisting of selfish players solely interested in their individual throughputs. Using recent game-theoretic results we first show that various resource sharing protocols actually fall in the scope of the set of stability-inducing resource allocation schemes. The game makes an extensive use of the Nash bargaining and some of its related properties that allow to control the incentives of the players. We show that the proposed mechanism can greatly improve the efficiency of 802.11 with heterogeneous nodes and reduce the negative impact of peer effects such as its MAC anomaly. The mechanism can be implemented as a virtual connectivity management layer to achieve efficient APs-user associations without modification of the MAC layer

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers

    Minimal Envy and Popular Matchings

    Full text link
    We study ex-post fairness in the object allocation problem where objects are valuable and commonly owned. A matching is fair from individual perspective if it has only inevitable envy towards agents who received most preferred objects -- minimal envy matching. A matching is fair from social perspective if it is supported by majority against any other matching -- popular matching. Surprisingly, the two perspectives give the same outcome: when a popular matching exists it is equivalent to a minimal envy matching. We show the equivalence between global and local popularity: a matching is popular if and only if there does not exist a group of size up to 3 agents that decides to exchange their objects by majority, keeping the remaining matching fixed. We algorithmically show that an arbitrary matching is path-connected to a popular matching where along the path groups of up to 3 agents exchange their objects by majority. A market where random groups exchange objects by majority converges to a popular matching given such matching exists. When popular matching might not exist we define most popular matching as a matching that is popular among the largest subset of agents. We show that each minimal envy matching is a most popular matching and propose a polynomial-time algorithm to find them

    Optimality of Treating Interference as Noise: A Combinatorial Perspective

    Get PDF
    For single-antenna Gaussian interference channels, we re-formulate the problem of determining the Generalized Degrees of Freedom (GDoF) region achievable by treating interference as Gaussian noise (TIN) derived in [3] from a combinatorial perspective. We show that the TIN power control problem can be cast into an assignment problem, such that the globally optimal power allocation variables can be obtained by well-known polynomial time algorithms. Furthermore, the expression of the TIN-Achievable GDoF region (TINA region) can be substantially simplified with the aid of maximum weighted matchings. We also provide conditions under which the TINA region is a convex polytope that relax those in [3]. For these new conditions, together with a channel connectivity (i.e., interference topology) condition, we show TIN optimality for a new class of interference networks that is not included, nor includes, the class found in [3]. Building on the above insights, we consider the problem of joint link scheduling and power control in wireless networks, which has been widely studied as a basic physical layer mechanism for device-to-device (D2D) communications. Inspired by the relaxed TIN channel strength condition as well as the assignment-based power allocation, we propose a low-complexity GDoF-based distributed link scheduling and power control mechanism (ITLinQ+) that improves upon the ITLinQ scheme proposed in [4] and further improves over the heuristic approach known as FlashLinQ. It is demonstrated by simulation that ITLinQ+ provides significant average network throughput gains over both ITLinQ and FlashLinQ, and yet still maintains the same level of implementation complexity. More notably, the energy efficiency of the newly proposed ITLinQ+ is substantially larger than that of ITLinQ and FlashLinQ, which is desirable for D2D networks formed by battery-powered devices.Comment: A short version has been presented at IEEE International Symposium on Information Theory (ISIT 2015), Hong Kon

    An Exchange Mechanism to Coordinate Flexibility in Residential Energy Cooperatives

    Full text link
    Energy cooperatives (ECs) such as residential and industrial microgrids have the potential to mitigate increasing fluctuations in renewable electricity generation, but only if their joint response is coordinated. However, the coordination and control of independently operated flexible resources (e.g., storage, demand response) imposes critical challenges arising from the heterogeneity of the resources, conflict of interests, and impact on the grid. Correspondingly, overcoming these challenges with a general and fair yet efficient exchange mechanism that coordinates these distributed resources will accommodate renewable fluctuations on a local level, thereby supporting the energy transition. In this paper, we introduce such an exchange mechanism. It incorporates a payment structure that encourages prosumers to participate in the exchange by increasing their utility above baseline alternatives. The allocation from the proposed mechanism increases the system efficiency (utilitarian social welfare) and distributes profits more fairly (measured by Nash social welfare) than individual flexibility activation. A case study analyzing the mechanism performance and resulting payments in numerical experiments over real demand and generation profiles of the Pecan Street dataset elucidates the efficacy to promote cooperation between co-located flexibilities in residential cooperatives through local exchange.Comment: Accepted in IEEE ICIT 201
    • …
    corecore