23 research outputs found

    Contents

    Get PDF

    How tough is toughness?

    Get PDF
    The concept of toughness was introduced by Chv谩tal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors

    Connected factors in graphs - a survey

    Get PDF

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Mixed finite elements with independent strain interpolation for isotropic and orthotropic damage

    Get PDF
    Tesi per compendi de publicacionsThe numerical modelling of fracture has been an active topic of research for over five decades. Most of the approaches employed rely on the use of the Finite Element Method, which has shown to be an effective and cost-efficient tool for solving many physical phenomena. However, the issue of the spurious dependency of the computed solution with the mesh orientation in cracking problems has raised a great concern since its early reports in the 1980s. This matter has proved to be a major challenge in computational solid mechanics; it affects numerous methods employed to solve the problem, in which the computed crack trajectories are spuriously dependent on the arrangement of the finite element (FE) mesh employed. When performing a structural analysis and, in particular, when computing localized failure, it is fundamental to use a reliable and mesh objective method to be able to trust the results produced by the FE code in terms of the fracture paths, bearing capacity, collapse mechanism and nonlinear responses. In this doctoral thesis, the mixed e/u strain/displacement finite element method is used together with multiple isotropic and orthotropic damage constitutive laws for the numerical modelling of quasi-brittle fracture with mesh objectivity. The independent interpolation of the strains increases the accuracy of the computed solution, guaranteeing the local convergence of the stress and strain fields. This feature is a crucial improvement over the standard FE formulation in solid mechanics where the strains are computed as local derivatives of the displacements and the local convergence of the resulting stresses and strains is not ensured. The enhanced precision provided by the mixed formulation in the area near the crack tip is decisive for obtaining unbiased numerical results with regard to the orientation of the FE mesh. The strain-driven format of the mixed formulation enables to readily consider different constitutive laws defined in a stress-strain structure in the numerical simulations. The thesis includes the study of the effect of the material model employed in the resulting crack trajectories as well as the analysis of the relative performance of several isotropic and orthotropic damage behaviors in mode I, mode II, mode III and mixed mode fracture problems. In this work specific isotropic and orthotropic damage laws are proposed for the numerical modelling of fracture under cyclic loading, which include tensile and compressive damage, stiffness recovery due to crack closure and reopening, as well as irreversible strains. Also, the capacity of the proposed model in reproducing the structural size effect is examined, which is an essential requirement for models aiming at computing quasi-brittle behavior. In this thesis, a comprehensive comparison of the mixed FE formulation with other techniques employed for computing fracture, specifically the Extended Finite Element Method (XFEM) and the Phase-field model, is made, revealing the cost-efficiency of the proposed Mixed Finite Element Method for modelling quasi-brittle cracking with mesh objectivity. This allows to perform the analysis of real-scale structures, in 2D and 3D, with enhanced accuracy, demonstrating the applicability of this method in the engineering practice. The validation of the model is performed with an extensive comparison of computed results with existing experimental tests and numerical benchmarks. The capacity of the mixed formulation in reproducing force-displacement curves, crack trajectories and collapse mechanisms with enhanced accuracy is demonstrated in detail.En esta tesis doctoral, el m茅todo de los elementos finitos mixtos e/u deformaci贸n/desplazamiento es utilizado junto con varias leyes constitutivas de da帽o is贸tropo y ort贸tropo para la modelizaci贸n num茅rica de la fractura cuasi-fr谩gil de forma objetiva con respecto a la orientaci贸n de la malla. La interpolaci贸n independiente de las deformaciones aumenta la precisi贸n de la soluci贸n calculada, garantizando la convergencia local de los campos de tensiones y deformaciones. Esta caracter铆stica representa una mejora crucial con respecto a la formulaci贸n est谩ndar de elementos finitos de la mec谩nica de s贸lidos, donde las deformaciones se calculan como derivadas locales de los desplazamientos y la convergencia local de las tensiones y deformaciones resultantes no est谩 garantizada. La mayor precisi贸n aportada por la formulaci贸n mixta en la zona cercana a la punta de la fisura es decisiva para obtener resultados num茅ricos que no presenten una dependencia espuria con la orientaci贸n de la malla de elementos finitos. El formato expresado en funci贸n de la deformaci贸n de la formulaci贸n mixta permite considerar directamente diferentes leyes constitutivas que siguen una estructura tensi贸n-deformaci贸n para su uso en las simulaciones num茅ricas. La tesis incluye el estudio del efecto que tiene la ley constitutiva utilizada en la trayectoria de las fisuras resultantes, as铆 como el an谩lisis del desempe帽o relativo de varias leyes de da帽o is贸tropas y ort贸tropas en problemas de fractura en modo I, modo II, modo III y modo mixto. En este trabajo se proponen leyes de da帽o is贸tropo y ort贸tropo espec铆ficas para la modelizaci贸n num茅rica de la fractura bajo carga c铆clica, que incluyen da帽o a tracci贸n y a compresi贸n, recuperaci贸n de la rigidez por el cierre y reapertura de fisuras, as铆 como deformaciones irreversibles. Adem谩s, se comprueba la capacidad del modelo propuesto para reproducir el efecto tama帽o, que es un requisito esencial para los modelos que tengan como objetivo calcular el comportamiento cuasi-fr谩gil de los materiales. En la tesis se realiza una comparaci贸n exhaustiva de la formulaci贸n mixta de elementos finitos con otras t茅cnicas que se utilizan para calcular el problema, espec铆ficamente el M茅todo de los Elementos Finitos Extendidos (XFEM) y el modelo Phase-field, revelando la eficiencia computacional del M茅todo de los Elementos Finitos Mixtos propuesto para modelizar la rotura cuasi-fr谩gil de forma objetiva con respecto a la malla. Ello permite realizar el an谩lisis de estructuras de tama帽o real, en 2D y 3D, con mayor precisi贸n, demostrando la aplicabilidad del m茅todo a problemas reales de ingenier铆a. La validaci贸n del modelo se realiza con una comparaci贸n de resultados calculados con ensayos de laboratorio existentes y con simulaciones de casos te贸ricos de referencia. Se demuestra la capacidad de la formulaci贸n mixta para reproducir curvas fuerza-desplazamiento, trayectorias de fisuras y mecanismos de colapso con precisi贸n mejorada.Postprint (published version
    corecore