321 research outputs found

    Error analysis of trigonometric integrators for semilinear wave equations

    Full text link
    An error analysis of trigonometric integrators (or exponential integrators) applied to spatial semi-discretizations of semilinear wave equations with periodic boundary conditions in one space dimension is given. In particular, optimal second-order convergence is shown requiring only that the exact solution is of finite energy. The analysis is uniform in the spatial discretization parameter. It covers the impulse method which coincides with the method of Deuflhard and the mollified impulse method of Garc\'ia-Archilla, Sanz-Serna & Skeel as well as the trigonometric methods proposed by Hairer & Lubich and by Grimm & Hochbruck. The analysis can also be used to explain the convergence behaviour of the St\"ormer-Verlet/leapfrog discretization in time.Comment: 25 page

    On the exact discretization of the classical harmonic oscillator equation

    Full text link
    We discuss the exact discretization of the classical harmonic oscillator equation (including the inhomogeneous case and multidimensional generalizations) with a special stress on the energy integral. We present and suggest some numerical applications.Comment: 29 page

    Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review

    Get PDF
    Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with time- or state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more detail
    • …
    corecore