49 research outputs found

    Techniques for Proving Approximation Ratios in Scheduling

    Get PDF
    The problem of finding a schedule with the lowest makespan in the class of all flowtime-optimal schedules for parallel identical machines is an NP-hard problem. Several approximation algorithms have been suggested for this problem. We focus on algorithms that are fast and easy to implement, rather than on more involved algorithms that might provide tighter approximation bounds. A set of approaches for proving conjectured bounds on performance ratios for such algorithms is outlined. These approaches are used to examine Coffman and Sethi's conjecture for a worst-case bound on the ratio of the makespan of the schedule generated by the LD algorithm to the makespan of the optimal schedule. A significant reduction is achieved in the size of a hypothesised minimal counterexample to this conjecture

    Some topics on deterministic scheduling problems

    Get PDF
    Sequencing and scheduling problems are motivated by allocation of limited resources over time. The goal is to find an optimal allocation where optimality is defined by some problem specific objectives. This dissertation considers the scheduling of a set of ri tasks, with precedence constraints, on m \u3e= 1 identical and parallel processors so as to minimize the makespan. Specifically, it considers the situation where tasks, along with their precedence constraints, are released at different times, and the scheduler has to make scheduling decisions without knowledge of future releases. Both preemptive and nonpreemptive schedules are considered. This dissertation shows that optimal online algorithms exist for some cases, while for others it is impossible to have one. The results give a sharp boundary delineating the possible and the impossible cases. Then an O(n log n)-time implementation is given for the algorithm which solves P|pj = 1, rj, outtree| ΣCj and P|pmtn, pj=1,rj,outtree|ΣCj. A fundamental problem in scheduling theory is that of scheduling a set of n unit-execution-time (UET) tasks, with precedence constraints, on m \u3e 1 parallel and identical processors so as to minimize the mean flow time. For arbitrary precedence constraints, this dissertation gives a 2-approximation algorithm. For intrees, a 1.5-approximation algorithm is given. Six dual criteria problems are also considered in this dissertation. Two open problems are first solved. Both problems are single machine scheduling problems with the number of tardy jobs as the primary criterion and with the total completion time and the total tardiness as the secondary criterion, respectively. Both problems are shown to be NP-hard. Then it focuses on bi-criteria scheduling problems involving the number of tardy jobs, the maximum weighted tardiness and the maximum tardiness. NP-hardness proofs are given for the scheduling problems when the number of tardy jobs is the primary criterion and the maximum weighted tardiness is the secondary criterion, or vice versa. It then considers complexity relationships between the various problems, gives polynomial-time algorithms for some special cases, and proposes fast heuristics for the general case

    Order scheduling in dedicated and flexible machine environments

    Get PDF
    Order scheduling models are relatively new in the field of scheduling. Consider a facility with m parallel machines that can process k different products (job types). Each machine can process a given subset of different product types. There are n orders from n different clients. Each order requests specific quantities of the various different products that can be produced concurrently on their given subsets of machines; it may have a release date, a weight and a due date. Preemptions may be allowed. An order can not be shipped until the processing of all the products for the order has been completed. Thus, the finish time of an order is the time when the last job of the order has been completed. Even though the idea is somewhat new that order scheduling measures the overall completion time of a set of jobs (i.e., an order requesting different product types) instead of the individual completion time of each product type for any given order, many applications require that decision-makers consider orders rather than the individual product types in orders. Research into order scheduling models is motivated by their various real-life applications in manufacturing systems, equipment maintenance, computing systems, and other industrial contexts, where the components of each order can be processed concurrently on the parallel machines. In this research, two cases of order scheduling models are studied, namely, the fully dedicated environment in which each machine can produce one and only one product type, and the fully flexible machine environment in which each machine can produce all product types. With different side constraints and objective functions, the two cases include a lot of problems that are of interest. Special interest is focused on the minimization of the total weighted completion time, the number of late orders, the maximum lateness, and so on. On the one hand, polynomial time algorithms are proposed for some problems. One the other hand, for problems that are NP-hard, complexity proofs are shown and heuristics with their worst-case performance and empirical analyses are also presented

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Survey of Algorithms for Scheduling Non-Interruptible Tasks

    Get PDF

    On-line machine scheduling

    Get PDF
    ix+93hlm.;24c
    corecore