8,740 research outputs found

    Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

    Get PDF
    Convex optimization is a well-established research area with applications in almost all fields. Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite programs and second-order cone programs. However, it has been established that these methods are excessively slow for high dimensions, i.e., they suffer from the curse of dimensionality. On the other hand, optimization algorithms on manifold have shown great ability in finding solutions to nonconvex problems in reasonable time. This paper is interested in solving a subset of convex optimization using a different approach. The main idea behind Riemannian optimization is to view the constrained optimization problem as an unconstrained one over a restricted search space. The paper introduces three manifolds to solve convex programs under particular box constraints. The manifolds, called the doubly stochastic, symmetric and the definite multinomial manifolds, generalize the simplex also known as the multinomial manifold. The proposed manifolds and algorithms are well-adapted to solving convex programs in which the variable of interest is a multidimensional probability distribution function. Theoretical analysis and simulation results testify the efficiency of the proposed method over state of the art methods. In particular, they reveal that the proposed framework outperforms conventional generic and specialized solvers, especially in high dimensions

    A note on a relationship between the inverse eigenvalue problems for nonnegative and doubly stochastic matrices and some applications

    Full text link
    In this note, we establish some connection between the nonnegative inverse eigenvalue problem and that of doubly stochastic one. More precisely, we prove that if (r;λ2,...,λn)(r; {\lambda}_2, ..., {\lambda}_n) is the spectrum of an n×nn\times n nonnegative matrix A with Perron eigenvalue r, then there exists a least real number kA≄−rk_A\geq -r such that (r+Ï”;λ2,...,λn)(r+\epsilon; {\lambda}_2, ..., {\lambda}_n) is the spectrum of an n×nn\times n nonnegative generalized doubly stochastic matrix for all ϔ≄kA.\epsilon\geq k_A. As a consequence, any solutions for the nonnegative inverse eigenvalue problem will yield solutions to the doubly stochastic inverse eigenvalue problem. In addition, we give a new sufficient condition for a stochastic matrix A to be cospectral to a doubly stochastic matrix B and in this case B is shown to be the unique closest doubly stochastic matrix to A with respect to the Frobenius norm. Some related results are also discussed.Comment: 8 page

    The NIEP

    Get PDF
    The nonnegative inverse eigenvalue problem (NIEP) asks which lists of nn complex numbers (counting multiplicity) occur as the eigenvalues of some nn-by-nn entry-wise nonnegative matrix. The NIEP has a long history and is a known hard (perhaps the hardest in matrix analysis?) and sought after problem. Thus, there are many subproblems and relevant results in a variety of directions. We survey most work on the problem and its several variants, with an emphasis on recent results, and include 130 references. The survey is divided into: a) the single eigenvalue problems; b) necessary conditions; c) low dimensional results; d) sufficient conditions; e) appending 0's to achieve realizability; f) the graph NIEP's; g) Perron similarities; and h) the relevance of Jordan structure

    The Sinkhorn-Knopp algorithm : convergence and applications

    Get PDF
    As long as a square nonnegative matrix A contains sufficient nonzero elements, then the Sinkhorn-Knopp algorithm can be used to balance the matrix, that is, to find a diagonal scaling of A that is doubly stochastic. It is known that the convergence is linear, and an upper bound has been given for the rate of convergence for positive matrices. In this paper we give an explicit expression for the rate of convergence for fully indecomposable matrices. We describe how balancing algorithms can be used to give a measure of web page significance. We compare the measure with some well known alternatives, including PageRank. We show that, with an appropriate modi. cation, the Sinkhorn-Knopp algorithm is a natural candidate for computing the measure on enormous data sets

    Symmetric, Hankel-symmetric, and Centrosymmetric Doubly Stochastic Matrices

    Get PDF
    We investigate convex polytopes of doubly stochastic matrices having special structures: symmetric, Hankel symmetric, centrosymmetric, and both symmetric and Hankel symmetric. We determine dimensions of these polytopes and classify their extreme points. We also determine a basis of the real vector spaces generated by permutation matrices with these special structures

    Quantum Theory is a Quasi-stochastic Process Theory

    Full text link
    There is a long history of representing a quantum state using a quasi-probability distribution: a distribution allowing negative values. In this paper we extend such representations to deal with quantum channels. The result is a convex, strongly monoidal, functorial embedding of the category of trace preserving completely positive maps into the category of quasi-stochastic matrices. This establishes quantum theory as a subcategory of quasi-stochastic processes. Such an embedding is induced by a choice of minimal informationally complete POVM's. We show that any two such embeddings are naturally isomorphic. The embedding preserves the dagger structure of the categories if and only if the POVM's are symmetric, giving a new use of SIC-POVM's, objects that are of foundational interest in the QBism community. We also study general convex embeddings of quantum theory and prove a dichotomy that such an embedding is either trivial or faithful.Comment: In Proceedings QPL 2017, arXiv:1802.0973
    • 

    corecore