718 research outputs found

    Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms

    Full text link
    Constrained submodular maximization problems have long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less understood: the first approximation algorithms even for the unconstrainted setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC '09, APPROX '09) show how to approximately maximize non-monotone submodular functions when the constraints are given by the intersection of p matroid constraints; their algorithm is based on local-search procedures that consider p-swaps, and hence the running time may be n^Omega(p), implying their algorithm is polynomial-time only for constantly many matroids. In this paper, we give algorithms that work for p-independence systems (which generalize constraints given by the intersection of p matroids), where the running time is poly(n,p). Our algorithm essentially reduces the non-monotone maximization problem to multiple runs of the greedy algorithm previously used in the monotone case. Our idea of using existing algorithms for monotone functions to solve the non-monotone case also works for maximizing a submodular function with respect to a knapsack constraint: we get a simple greedy-based constant-factor approximation for this problem. With these simpler algorithms, we are able to adapt our approach to constrained non-monotone submodular maximization to the (online) secretary setting, where elements arrive one at a time in random order, and the algorithm must make irrevocable decisions about whether or not to select each element as it arrives. We give constant approximations in this secretary setting when the algorithm is constrained subject to a uniform matroid or a partition matroid, and give an O(log k) approximation when it is constrained by a general matroid of rank k.Comment: In the Proceedings of WINE 201

    Approximate F_2-Sketching of Valuation Functions

    Get PDF
    We study the problem of constructing a linear sketch of minimum dimension that allows approximation of a given real-valued function f : F_2^n - > R with small expected squared error. We develop a general theory of linear sketching for such functions through which we analyze their dimension for most commonly studied types of valuation functions: additive, budget-additive, coverage, alpha-Lipschitz submodular and matroid rank functions. This gives a characterization of how many bits of information have to be stored about the input x so that one can compute f under additive updates to its coordinates. Our results are tight in most cases and we also give extensions to the distributional version of the problem where the input x in F_2^n is generated uniformly at random. Using known connections with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in our work extend to the space complexity of algorithms evaluating f(x) under long sequences of additive updates to the input x presented as a stream. Similar results hold for simultaneous communication in a distributed setting

    Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets

    Full text link
    Consider the following problem: given a set system (U,I) and an edge-weighted graph G = (U, E) on the same universe U, find the set A in I such that the Steiner tree cost with terminals A is as large as possible: "which set in I is the most difficult to connect up?" This is an example of a max-min problem: find the set A in I such that the value of some minimization (covering) problem is as large as possible. In this paper, we show that for certain covering problems which admit good deterministic online algorithms, we can give good algorithms for max-min optimization when the set system I is given by a p-system or q-knapsacks or both. This result is similar to results for constrained maximization of submodular functions. Although many natural covering problems are not even approximately submodular, we show that one can use properties of the online algorithm as a surrogate for submodularity. Moreover, we give stronger connections between max-min optimization and two-stage robust optimization, and hence give improved algorithms for robust versions of various covering problems, for cases where the uncertainty sets are given by p-systems and q-knapsacks.Comment: 17 pages. Preliminary version combining this paper and http://arxiv.org/abs/0912.1045 appeared in ICALP 201

    The Maximum Traveling Salesman Problem with Submodular Rewards

    Full text link
    In this paper, we look at the problem of finding the tour of maximum reward on an undirected graph where the reward is a submodular function, that has a curvature of κ\kappa, of the edges in the tour. This problem is known to be NP-hard. We analyze two simple algorithms for finding an approximate solution. Both algorithms require O(V3)O(|V|^3) oracle calls to the submodular function. The approximation factors are shown to be 12+κ\frac{1}{2+\kappa} and max{23(2+κ),2/3(1κ)}\max\set{\frac{2}{3(2+\kappa)},2/3(1-\kappa)}, respectively; so the second method has better bounds for low values of κ\kappa. We also look at how these algorithms perform for a directed graph and investigate a method to consider edge costs in addition to rewards. The problem has direct applications in monitoring an environment using autonomous mobile sensors where the sensing reward depends on the path taken. We provide simulation results to empirically evaluate the performance of the algorithms.Comment: Extended version of ACC 2013 submission (including p-system greedy bound with curvature

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case
    corecore