29 research outputs found

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Theorems of Alternatives for Substructural Logics

    Full text link
    A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the R-mingle logic RM to the validity of a linear combination of these formulas, and Gordan's theorem for solutions of linear systems over the real numbers, that yields an analogous reduction for validity in Abelian logic A. In this paper, general conditions are provided for axiomatic extensions of involutive uninorm logic without additive constants to admit a theorem of alternatives. It is also shown that a theorem of alternatives for a logic can be used to establish (uniform) deductive interpolation and completeness with respect to a class of dense totally ordered residuated lattices

    Decidability of Order-Based Modal Logics

    Get PDF

    On triangular norms and uninorms definable in ƁΠ12

    Get PDF
    AbstractIn this paper, we investigate the definability of classes of t-norms and uninorms in the logic ƁΠ12. In particular we provide a complete characterization of definable continuous t-norms, weak nilpotent minimum t-norms, conjunctive uninorms continuous on [0,1), and idempotent conjunctive uninorms, and give both positive and negative results concerning definability of left-continuous t-norms (and uninorms). We show that the class of definable uninorms is closed under construction methods as annihilation, rotation and rotation–annihilation. Moreover, we prove that every logic based on a definable uninorm is in PSPACE, and that any finitely axiomatizable logic based on a class of definable uninorms is decidable. Finally we show that the Uninorm Mingle Logic (UML) and the Basic Uninorm Logic (BUL) are finitely strongly standard complete w.r.t. the related class of definable left-continuous conjunctive uninorms

    A map of dependencies among three-valued logics

    Get PDF
    International audienceThree-valued logics arise in several fields of computer science, both inspired by concrete problems (such as in the management of the null value in databases) and theoretical considerations. Several three-valued logics have been defined. They differ by their choice of basic connectives, hence also from a syntactic and proof-theoretic point of view. Different interpretations of the third truth value have also been suggested. They often carry an epistemic flavor. In this work, relationships between logical connectives on three-valued functions are explored. Existing theorems of functional completeness have laid bare some of these links, based on specific connectives. However we try to draw a map of such relationships between conjunctions, negations and implications that extend Boolean ones. It turns out that all reasonable connectives can be defined from a few of them and so all known three-valued logics appear as a fragment of only one logic. These results can be instrumental when choosing, for each application context, the appropriate fragment where the basic connectives make full sense, based on the appropriate meaning of the third truth-value

    Fitting aggregation operators to data

    Full text link
    Theoretical advances in modelling aggregation of information produced a wide range of aggregation operators, applicable to almost every practical problem. The most important classes of aggregation operators include triangular norms, uninorms, generalised means and OWA operators.With such a variety, an important practical problem has emerged: how to fit the parameters/ weights of these families of aggregation operators to observed data? How to estimate quantitatively whether a given class of operators is suitable as a model in a given practical setting? Aggregation operators are rather special classes of functions, and thus they require specialised regression techniques, which would enforce important theoretical properties, like commutativity or associativity. My presentation will address this issue in detail, and will discuss various regression methods applicable specifically to t-norms, uninorms and generalised means. I will also demonstrate software implementing these regression techniques, which would allow practitioners to paste their data and obtain optimal parameters of the chosen family of operators.<br /

    Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics

    Get PDF
    We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FLew (i.e. IMALLW) that have a cut-free hypersequent proof calculus. Specifically: every analytic structural rule exten- sion of HFLew. Decidability for the corresponding extensions of its contraction counterpart FLec was established recently but their computational complexity was left unanswered. In the second part of this paper, we introduce just enough on length functions for well-quasi-orderings and the fast-growing complexity classes to obtain complexity upper bounds for both the weakening and contraction extensions. A specific instance of this result yields the first complexity bound for the prominent fuzzy logic MTL (monoidal t-norm based logic) providing an answer to a long- standing open problem
    corecore