2,638 research outputs found

    Actuator and sensor fault estimation based on a proportional-integral quasi-LPV observer with inexact scheduling parameters

    Get PDF
    © 2019. ElsevierThis paper presents a method for actuator and sensor fault estimation based on a proportional-integral observer (PIO) for a class of nonlinear system described by a polytopic quasi-linear parameter varying (qLPV) mathematical model. Contrarily to the traditional approach, which considers measurable or unmeasurable scheduling parameters, this work proposes a methodology that considers inexact scheduling parameters. This condition is present in many physical systems where the scheduling parameters can be affected by noise, offsets, calibration errors, and other factors that have a negative impact on the measurements. A H8 performance criterion is considered in the design in order to guarantee robustness against sensor noise, disturbance, and inexact scheduling parameters. Then, a set of linear matrix inequalities (LMIs) is derived by the use of a quadratic Lyapunov function. The solution of the LMI guarantees asymptotic stability of the PIO. Finally, the performance and applicability of the proposed method are illustrated through a numerical experiment in a nonlinear system.Peer ReviewedPostprint (author's final draft

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    A self-validating control system based approach to plant fault detection and diagnosis

    Get PDF
    An approach is proposed in which fault detection and diagnosis (FDD) tasks are distributed to separate FDD modules associated with each control system located throughout a plant. Intended specifically for those control systems that inherently eliminate steady state error, it is modular, steady state based, requires very little process specific information and therefore should be attractive to control systems implementers who seek economies of scale. The approach is applicable to virtually all types of process plant, whether they are open loop stable or not, have a type or class number of zero or not and so on. Based on qualitative reasoning, the approach is founded on the application of control systems theory to single and cascade control systems with integral action. This results in the derivation of cause-effect knowledge and fault isolation procedures that take into account factors like interactions between control systems, and the availability of non-control-loop-based sensors

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Banks of estimators and decision mechanisms for pitch actuator and sensor FE in wind turbines

    Get PDF
    Comunicació presentada a SAFEPROCESS 2018. 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (Warsaw, Poland, 29–31 August 2018)Wind turbines are prone to multiple different faults and input observability conditions are not always guaranteed for these faults. In such cases, it is not possible to build estimators which provide appropriate fault estimates for its further use in active FTC schemes such as fault tolerant MPC. Provided that these faults are generally non-simultaneous, we make use of this property for building banks of model-based estimators and statistical-based decision mechanisms that provide appropriate fault estimates for enhancing active FTC capabilities. We apply these strategies to a well-known wind turbine FDI and FTC benchmark and we show the effectiveness of the bank of estimators and decision mechanisms for estimating the faults occurring in the pitch system of a wind turbine

    Filter for detecting and isolating faults for a nonlinear system

    Get PDF
    In the paper the problem of detecting and isolating multiple faults for nonlinear systems is considered. A strategy of state filtering is derived in order to detect and isolate multiple faults which appear simultaneously or sequentially in a discrete time nonlinear systems with unknown inputs. For the considered system for which a fault isolation condition is fulfilled the proposed method can isolate p simultaneous faults with at least p+q output measurements, where q is the number of unknown inputs or disturbances. A reduced output residual vector of dimension p+q is generated and the elements of this vector are decoupled in a way that each element of the vector is associated with only one fault or unmeasured input

    Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems

    Get PDF
    This paper proposes an integrated fault estimation and fault-tolerant control (FTC) design for Lipschitz non-linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non-linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H∞ optimization with a single-step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single-link manipulator example is given to illustrate the effectiveness of the proposed approach
    • 

    corecore