43,521 research outputs found

    Some Varieties of Superparadox. The implications of dynamic contradiction, the characteristic form of breakdown of breakdown of sense to which self-reference is prone

    Get PDF
    The Problem of the Paradoxes came to the fore in philosophy and mathematics with the discovery of Russell's Paradox in 1901. It is the "forgotten" intellectual-scientific problem of the Twentieth Century, because for more than sixty years a pretence was maintained, by a consensus of logicians, that the problem had been "solved"

    The ultimate tactics of self-referential systems

    Full text link
    Mathematics is usually regarded as a kind of language. The essential behavior of physical phenomena can be expressed by mathematical laws, providing descriptions and predictions. In the present essay I argue that, although mathematics can be seen, in a first approach, as a language, it goes beyond this concept. I conjecture that mathematics presents two extreme features, denoted here by {\sl irreducibility} and {\sl insaturation}, representing delimiters for self-referentiality. These features are then related to physical laws by realizing that nature is a self-referential system obeying bounds similar to those respected by mathematics. Self-referential systems can only be autonomous entities by a kind of metabolism that provides and sustains such an autonomy. A rational mind, able of consciousness, is a manifestation of the self-referentiality of the Universe. Hence mathematics is here proposed to go beyond language by actually representing the most fundamental existence condition for self-referentiality. This idea is synthesized in the form of a principle, namely, that {\sl mathematics is the ultimate tactics of self-referential systems to mimic themselves}. That is, well beyond an effective language to express the physical world, mathematics uncovers a deep manifestation of the autonomous nature of the Universe, wherein the human brain is but an instance.Comment: 9 pages. This essay received the 4th. Prize in the 2015 FQXi essay contest: "Trick or Truth: the Mysterious Connection Between Physics and Mathematics

    A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points

    Full text link
    Following F. William Lawvere, we show that many self-referential paradoxes, incompleteness theorems and fixed point theorems fall out of the same simple scheme. We demonstrate these similarities by showing how this simple scheme encompasses the semantic paradoxes, and how they arise as diagonal arguments and fixed point theorems in logic, computability theory, complexity theory and formal language theory

    G\"odel Incompleteness and the Black Hole Information Paradox

    Full text link
    Semiclassical reasoning suggests that the process by which an object collapses into a black hole and then evaporates by emitting Hawking radiation may destroy information, a problem often referred to as the black hole information paradox. Further, there seems to be no unique prediction of where the information about the collapsing body is localized. We propose that the latter aspect of the paradox may be a manifestation of an inconsistent self-reference in the semiclassical theory of black hole evolution. This suggests the inadequacy of the semiclassical approach or, at worst, that standard quantum mechanics and general relavity are fundamentally incompatible. One option for the resolution for the paradox in the localization is to identify the G\"odel-like incompleteness that corresponds to an imposition of consistency, and introduce possibly new physics that supplies this incompleteness. Another option is to modify the theory in such a way as to prohibit self-reference. We discuss various possible scenarios to implement these options, including eternally collapsing objects, black hole remnants, black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement

    Mathematical Foundations of Consciousness

    Get PDF
    We employ the Zermelo-Fraenkel Axioms that characterize sets as mathematical primitives. The Anti-foundation Axiom plays a significant role in our development, since among other of its features, its replacement for the Axiom of Foundation in the Zermelo-Fraenkel Axioms motivates Platonic interpretations. These interpretations also depend on such allied notions for sets as pictures, graphs, decorations, labelings and various mappings that we use. A syntax and semantics of operators acting on sets is developed. Such features enable construction of a theory of non-well-founded sets that we use to frame mathematical foundations of consciousness. To do this we introduce a supplementary axiomatic system that characterizes experience and consciousness as primitives. The new axioms proceed through characterization of so- called consciousness operators. The Russell operator plays a central role and is shown to be one example of a consciousness operator. Neural networks supply striking examples of non-well-founded graphs the decorations of which generate associated sets, each with a Platonic aspect. Employing our foundations, we show how the supervening of consciousness on its neural correlates in the brain enables the framing of a theory of consciousness by applying appropriate consciousness operators to the generated sets in question

    Hypermedia Learning Objects System - On the Way to a Semantic Educational Web

    Full text link
    While eLearning systems become more and more popular in daily education, available applications lack opportunities to structure, annotate and manage their contents in a high-level fashion. General efforts to improve these deficits are taken by initiatives to define rich meta data sets and a semanticWeb layer. In the present paper we introduce Hylos, an online learning system. Hylos is based on a cellular eLearning Object (ELO) information model encapsulating meta data conforming to the LOM standard. Content management is provisioned on this semantic meta data level and allows for variable, dynamically adaptable access structures. Context aware multifunctional links permit a systematic navigation depending on the learners and didactic needs, thereby exploring the capabilities of the semantic web. Hylos is built upon the more general Multimedia Information Repository (MIR) and the MIR adaptive context linking environment (MIRaCLE), its linking extension. MIR is an open system supporting the standards XML, Corba and JNDI. Hylos benefits from manageable information structures, sophisticated access logic and high-level authoring tools like the ELO editor responsible for the semi-manual creation of meta data and WYSIWYG like content editing.Comment: 11 pages, 7 figure
    corecore