2,675 research outputs found

    Discrete-time queues with zero-regenerative arrivals: moments and examples

    Get PDF
    In this paper we investigate a single-server discrete-time queueing system with single-slot service times. The stationary ergodic arrival process this queueing system is subject to, satisfies a regeneration property when there are no arrivals during a slot. Expressions for the mean and the variance of the queue content in steady state are obtained for this broad class which includes among others autoregressive arrival processes and M/G/infinity-input or train arrival processes. To illustrate our results, we then consider a number of numerical examples

    The effective bandwidth problem revisited

    Full text link
    The paper studies a single-server queueing system with autonomous service and â„“\ell priority classes. Arrival and departure processes are governed by marked point processes. There are â„“\ell buffers corresponding to priority classes, and upon arrival a unit of the kkth priority class occupies a place in the kkth buffer. Let N(k)N^{(k)}, k=1,2,...,â„“k=1,2,...,\ell denote the quota for the total kkth buffer content. The values N(k)N^{(k)} are assumed to be large, and queueing systems both with finite and infinite buffers are studied. In the case of a system with finite buffers, the values N(k)N^{(k)} characterize buffer capacities. The paper discusses a circle of problems related to optimization of performance measures associated with overflowing the quota of buffer contents in particular buffers models. Our approach to this problem is new, and the presentation of our results is simple and clear for real applications.Comment: 29 pages, 11pt, Final version, that will be published as is in Stochastic Model

    Channel-Aware Random Access in the Presence of Channel Estimation Errors

    Full text link
    In this work, we consider the random access of nodes adapting their transmission probability based on the local channel state information (CSI) in a decentralized manner, which is called CARA. The CSI is not directly available to each node but estimated with some errors in our scenario. Thus, the impact of imperfect CSI on the performance of CARA is our main concern. Specifically, an exact stability analysis is carried out when a pair of bursty sources are competing for a common receiver and, thereby, have interdependent services. The analysis also takes into account the compound effects of the multipacket reception (MPR) capability at the receiver. The contributions in this paper are twofold: first, we obtain the exact stability region of CARA in the presence of channel estimation errors; such an assessment is necessary as the errors in channel estimation are inevitable in the practical situation. Secondly, we compare the performance of CARA to that achieved by the class of stationary scheduling policies that make decisions in a centralized manner based on the CSI feedback. It is shown that the stability region of CARA is not necessarily a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Cambridge, MA, USA, July 201
    • …
    corecore