1,759 research outputs found

    Optimal control in nonlinear models: a generalised Gauss-Newton algorithm with analytic derivatives

    Get PDF
    In this paper we propose an algorithm for the solution of optimal control problems with nonlinear models based on a generalised Gauss- Newton algorithm but making use of analytic model derivatives. The method is implemented in WinSolve, a general nonlinear model solu- tion program.

    Fast matrix computations for functional additive models

    Full text link
    It is common in functional data analysis to look at a set of related functions: a set of learning curves, a set of brain signals, a set of spatial maps, etc. One way to express relatedness is through an additive model, whereby each individual function gi(x)g_{i}\left(x\right) is assumed to be a variation around some shared mean f(x)f(x). Gaussian processes provide an elegant way of constructing such additive models, but suffer from computational difficulties arising from the matrix operations that need to be performed. Recently Heersink & Furrer have shown that functional additive model give rise to covariance matrices that have a specific form they called quasi-Kronecker (QK), whose inverses are relatively tractable. We show that under additional assumptions the two-level additive model leads to a class of matrices we call restricted quasi-Kronecker, which enjoy many interesting properties. In particular, we formulate matrix factorisations whose complexity scales only linearly in the number of functions in latent field, an enormous improvement over the cubic scaling of na\"ive approaches. We describe how to leverage the properties of rQK matrices for inference in Latent Gaussian Models

    Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM

    Get PDF
    Elliptic boundary value problems which are posed on a random domain can be mapped to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix and the loading. While this domain mapping method is quite efficient for theory and practice, since only a single domain discretisation is needed, it also requires the knowledge of the domain mapping. However, in certain applications, the random domain is only described by its random boundary, while the quantity of interest is defined on a fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute a random domain mapping on the whole domain, such that the domain mapping is the identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal domain on to the random boundary. To overcome the necessity of computing such a mapping, we therefore couple the finite element method on the fixed subdomain with the boundary element method on the random boundary. We verify the required regularity of the solution with respect to the random domain mapping for the use of multilevel quadrature, derive the coupling formulation, and show by numerical results that the approach is feasible

    Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the links below - Copyright @ 2013 Springer-VerlagA numerical implementation of the direct boundary-domain integral and integro-differential equations, BDIDEs, for treatment of the Dirichlet problem for a scalar elliptic PDE with variable coefficient in a three-dimensional domain is discussed. The mesh-based discretisation of the BDIEs with tetrahedron domain elements in conjunction with collocation method leads to a system of linear algebraic equations (discretised BDIE). The involved fully populated matrices are approximated by means of the H-Matrix/adaptive cross approximation technique. Convergence of the method is investigated.This study is partially supported by the EPSRC grant EP/H020497/1:"Mathematical Analysis of Localised-Boundary-Domain Integral Equations for Variable-Coefficients Boundary Value Problems"

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods
    corecore