12,892 research outputs found

    Tropical polar cones, hypergraph transversals, and mean payoff games

    Get PDF
    We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.Comment: 27 pages, 6 figures, revised versio

    A-Tint: A polymake extension for algorithmic tropical intersection theory

    Full text link
    In this paper we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus of this paper is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.Comment: 32 pages, 5 figures, 4 tables. Second version: Revised version, to be published in European Journal of Combinatoric

    Polyhedral computational geometry for averaging metric phylogenetic trees

    Get PDF
    This paper investigates the computational geometry relevant to calculations of the Frechet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are determined by the location of the varying endpoint in a certain polyhedral subdivision of tree space. The variance function associated to a finite subset of tree space has a fixed CC^\infty algebraic formula within each cell of the corresponding subdivision, and is continuously differentiable in the interior of each orthant of tree space. We use this subdivision to establish two iterative methods for producing sequences that converge to the Frechet mean: one based on Sturm's Law of Large Numbers, and another based on descent algorithms for finding optima of smooth functions on convex polyhedra. We present properties and biological applications of Frechet means and extend our main results to more general globally nonpositively curved spaces composed of Euclidean orthants.Comment: 43 pages, 6 figures; v2: fixed typos, shortened Sections 1 and 5, added counter example for polyhedrality of vistal subdivision in general CAT(0) cubical complexes; v1: 43 pages, 5 figure

    Minimal external representations of tropical polyhedra

    Get PDF
    Tropical polyhedra are known to be representable externally, as intersections of finitely many tropical half-spaces. However, unlike in the classical case, the extreme rays of their polar cones provide external representations containing in general superfluous half-spaces. In this paper, we prove that any tropical polyhedral cone in R^n (also known as "tropical polytope" in the literature) admits an essentially unique minimal external representation. The result is obtained by establishing a (partial) anti-exchange property of half-spaces. Moreover, we show that the apices of the half-spaces appearing in such non-redundant external representations are vertices of the cell complex associated with the polyhedral cone. We also establish a necessary condition for a vertex of this cell complex to be the apex of a non-redundant half-space. It is shown that this condition is sufficient for a dense class of polyhedral cones having "generic extremities".Comment: v1: 32 pages, 10 figures; v2: minor revision, 34 pages, 10 figure

    Approximation of norms on Banach spaces

    Full text link
    Relatively recently it was proved that if Γ\Gamma is an arbitrary set, then any equivalent norm on c0(Γ)c_0(\Gamma) can be approximated uniformly on bounded sets by polyhedral norms and CC^\infty smooth norms, with arbitrary precision. We extend this result to more classes of spaces having uncountable symmetric bases, such as preduals of the `discrete' Lorentz spaces d(w,1,Γ)d(w,1,\Gamma), and certain symmetric Nakano spaces and Orlicz spaces. We also show that, given an arbitrary ordinal number α\alpha, there exists a scattered compact space KK having Cantor-Bendixson height at least α\alpha, such that every equivalent norm on C(K)C(K) can be approximated as above

    A generalization of Voronoi's reduction theory and its application

    Full text link
    We consider Voronoi's reduction theory of positive definite quadratic forms which is based on Delone subdivision. We extend it to forms and Delone subdivisions having a prescribed symmetry group. Even more general, the theory is developed for forms which are restricted to a linear subspace in the space of quadratic forms. We apply the new theory to complete the classification of totally real thin algebraic number fields which was recently initiated by Bayer-Fluckiger and Nebe. Moreover, we apply it to construct new best known sphere coverings in dimensions 9,..., 15.Comment: 31 pages, 2 figures, 2 tables, (v4) minor changes, to appear in Duke Math.
    corecore