162,624 research outputs found

    50 Years of the Golomb--Welch Conjecture

    Full text link
    Since 1968, when the Golomb--Welch conjecture was raised, it has become the main motive power behind the progress in the area of the perfect Lee codes. Although there is a vast literature on the topic and it is widely believed to be true, this conjecture is far from being solved. In this paper, we provide a survey of papers on the Golomb--Welch conjecture. Further, new results on Golomb--Welch conjecture dealing with perfect Lee codes of large radii are presented. Algebraic ways of tackling the conjecture in the future are discussed as well. Finally, a brief survey of research inspired by the conjecture is given.Comment: 28 pages, 2 figure

    Diameter Perfect Lee Codes

    Full text link
    Lee codes have been intensively studied for more than 40 years. Interest in these codes has been triggered by the Golomb-Welch conjecture on the existence of the perfect error-correcting Lee codes. In this paper we deal with the existence and enumeration of diameter perfect Lee codes. As main results we determine all qq for which there exists a linear diameter-4 perfect Lee code of word length nn over Zq,Z_{q}, and prove that for each n3n\geq 3 there are uncountable many diameter-4 perfect Lee codes of word length nn over Z.Z. This is in a strict contrast with perfect error-correcting Lee codes of word length nn over ZZ\,\ as there is a unique such code for n=3,n=3, and its is conjectured that this is always the case when 2n+12n+1 is a prime. We produce diameter perfect Lee codes by an algebraic construction that is based on a group homomorphism. This will allow us to design an efficient algorithm for their decoding. We hope that this construction will turn out to be useful far beyond the scope of this paper

    Perfect Mannheim, Lipschitz and Hurwitz weight codes

    Full text link
    In this paper, upper bounds on codes over Gaussian integers, Lipschitz integers and Hurwitz integers with respect to Mannheim metric, Lipschitz and Hurwitz metric are given.Comment: 21 page

    Correcting Charge-Constrained Errors in the Rank-Modulation Scheme

    Get PDF
    We investigate error-correcting codes for a the rank-modulation scheme with an application to flash memory devices. In this scheme, a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The resulting scheme eliminates the need for discrete cell levels, overcomes overshoot errors when programming cells (a serious problem that reduces the writing speed), and mitigates the problem of asymmetric errors. In this paper, we study the properties of error-correcting codes for charge-constrained errors in the rank-modulation scheme. In this error model the number of errors corresponds to the minimal number of adjacent transpositions required to change a given stored permutation to another erroneous one—a distance measure known as Kendall’s τ-distance.We show bounds on the size of such codes, and use metric-embedding techniques to give constructions which translate a wealth of knowledge of codes in the Lee metric to codes over permutations in Kendall’s τ-metric. Specifically, the one-error-correcting codes we construct are at least half the ball-packing upper bound
    corecore