466 research outputs found

    Perfect Packings in Quasirandom Hypergraphs II

    Full text link
    For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r >= 4 and 0<p<1. Suppose that H is an n-vertex triple system with r|n and the following two properties: * for every graph G with V(G)=V(H), at least p proportion of the triangles in G are also edges of H, * for every vertex x of H, the link graph of x is a quasirandom graph with density at least p. Then H has a perfect Kr(3)K_r^{(3)}-packing. Moreover, we show that neither hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's hypergraph blowup lemma, with a slightly stronger hypothesis on H.Comment: 17 page

    Packing k-partite k-uniform hypergraphs

    Get PDF
    Let GG and HH be kk-graphs (kk-uniform hypergraphs); then a perfect HH-packing in GG is a collection of vertex-disjoint copies of HH in GG which together cover every vertex of GG. For any fixed HH let δ(H,n)\delta(H, n) be the minimum δ\delta such that any kk-graph GG on nn vertices with minimum codegree δ(G)≥δ\delta(G) \geq \delta contains a perfect HH-packing. The problem of determining δ(H,n)\delta(H, n) has been widely studied for graphs (i.e. 22-graphs), but little is known for k≥3k \geq 3. Here we determine the asymptotic value of δ(H,n)\delta(H, n) for all complete kk-partite kk-graphs HH, as well as a wide class of other kk-partite kk-graphs. In particular, these results provide an asymptotic solution to a question of R\"odl and Ruci\'nski on the value of δ(H,n)\delta(H, n) when HH is a loose cycle. We also determine asymptotically the codegree threshold needed to guarantee an HH-packing covering all but a constant number of vertices of GG for any complete kk-partite kk-graph HH.Comment: v2: Updated with minor corrections. Accepted for publication in Journal of Combinatorial Theory, Series

    Completing Partial Packings of Bipartite Graphs

    Get PDF
    Given a bipartite graph HH and an integer nn, let f(n;H)f(n;H) be the smallest integer such that, any set of edge disjoint copies of HH on nn vertices, can be extended to an HH-design on at most n+f(n;H)n+f(n;H) vertices. We establish tight bounds for the growth of f(n;H)f(n;H) as n→∞n \rightarrow \infty. In particular, we prove the conjecture of F\"uredi and Lehel \cite{FuLe} that f(n;H)=o(n)f(n;H) = o(n). This settles a long-standing open problem

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ
    • …
    corecore