60,035 research outputs found

    ℋ∞ control of nonlinear systems via output feedback: controller parameterization

    Get PDF
    The standard state space solutions to the ℋ∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of local nonlinear (output feedback) ℋ∞ controllers are parameterized as nonlinear fractional transformations on contractive, stable nonlinear parameters. As in the linear case, the ℋ∞ control problem is solved by its reduction to state feedback and output estimation problems, together with a separation argument. Sufficient conditions for ℋ∞-control problem to be locally solved are also derived with this machinery

    Constrained nonlinear optimal control: a converse HJB approach

    Get PDF
    Extending the concept of solving the Hamilton-Jacobi-Bellman (HJB) optimization equation backwards [2], the so called converse constrained optimal control problem is introduced, and used to create various classes of nonlinear systems for which the optimal controller subject to constraints is known. In this way a systematic method for the testing, validation and comparison of different control techniques with the optimal is established. Because it naturally and explicitly handles constraints, particularly control input saturation, model predictive control (MPC) is a potentially powerful approach for nonlinear control design. However, nonconvexity of the nonlinear programs (NLP) involved in the MPC optimization makes the solution problematic. In order to explore properties of MPC-based constrained control schemes, and to point out the potential issues in implementing MPC, challenging benchmark examples are generated and analyzed. Properties of MPC-based constrained techniques are then evaluated and implementation issues are explored by applying both nonlinear MPC and MPC with feedback linearization
    corecore