15 research outputs found

    On the Communication Complexity of High-Dimensional Permutations

    Get PDF
    We study the multiparty communication complexity of high dimensional permutations in the Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL) who also gave a nontrivial protocol for the Exactly-n problem where three players receive integer inputs and need to decide if their inputs sum to a given integer n. There is a considerable body of literature dealing with the same problem, where (N,+) is replaced by some other abelian group. Our work can be viewed as a far-reaching extension of this line of research. We show that the known lower bounds for that group-theoretic problem apply to all high dimensional permutations. We introduce new proof techniques that reveal new and unexpected connections between NOF communication complexity of permutations and a variety of well-known problems in combinatorics. We also give a direct algorithmic protocol for Exactly-n. In contrast, all previous constructions relied on large sets of integers without a 3-term arithmetic progression

    Combinatorial Expressions and Lower Bounds

    Get PDF
    A new paradigm, called combinatorial expressions, for computing functions expressing properties over infinite domains is introduced. The main result is a generic technique, for showing indefinability of certain functions by the expressions, which uses a result, namely Hales-Jewett theorem, from Ramsey theory. An application of the technique for proving inexpressibility results for logics on metafinite structures is given. Some extensions and normal forms are also presented

    Multiplayer Parallel Repetition for Expanding Games

    Get PDF
    We investigate the value of parallel repetition of one-round games with any number of players k>=2. It has been an open question whether an analogue of Raz\u27s Parallel Repetition Theorem holds for games with more than two players, i.e., whether the value of the repeated game decays exponentially with the number of repetitions. Verbitsky has shown, via a reduction to the density Hales-Jewett theorem, that the value of the repeated game must approach zero, as the number of repetitions increases. However, the rate of decay obtained in this way is extremely slow, and it is an open question whether the true rate is exponential as is the case for all two-player games. Exponential decay bounds are known for several special cases of multi-player games, e.g., free games and anchored games. In this work, we identify a certain expansion property of the base game and show all games with this property satisfy an exponential decay parallel repetition bound. Free games and anchored games satisfy this expansion property, and thus our parallel repetition theorem reproduces all earlier exponential-decay bounds for multiplayer games. More generally, our parallel repetition bound applies to all multiplayer games that are *connected* in a certain sense. We also describe a very simple game, called the GHZ game, that does not satisfy this connectivity property, and for which we do not know an exponential decay bound. We suspect that progress on bounding the value of this the parallel repetition of the GHZ game will lead to further progress on the general question

    Polynomial Bounds On Parallel Repetition For All 3-Player Games With Binary Inputs

    Get PDF
    We prove that for every 3-player (3-prover) game G\mathcal G with value less than one, whose query distribution has the support S={(1,0,0),(0,1,0),(0,0,1)}\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\} of hamming weight one vectors, the value of the nn-fold parallel repetition G⊗n\mathcal G^{\otimes n} decays polynomially fast to zero; that is, there is a constant c=c(G)>0c = c(\mathcal G)>0 such that the value of the game G⊗n\mathcal G^{\otimes n} is at most n−cn^{-c}. Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For every\textbf{every} 3-player game G\mathcal G over binary questions\textit{binary questions} and arbitrary answer lengths\textit{arbitrary answer lengths}, with value less than 1, there is a constant c=c(G)>0c = c(\mathcal G)>0 such that the value of the game G⊗n\mathcal G^{\otimes n} is at most n−cn^{-c}. Our proof technique is new and requires many new ideas. For example, we make use of the Level-kk inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work

    Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

    Get PDF
    We prove that for every 3-player (3-prover) game G with value less than one, whose query distribution has the support S = {(1,0,0), (0,1,0), (0,0,1)} of Hamming weight one vectors, the value of the n-fold parallel repetition G^{?n} decays polynomially fast to zero; that is, there is a constant c = c(G) > 0 such that the value of the game G^{?n} is at most n^{-c}. Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For every 3-player game G over binary questions and arbitrary answer lengths, with value less than 1, there is a constant c = c(G) > 0 such that the value of the game G^{?n} is at most n^{-c}. Our proof technique is new and requires many new ideas. For example, we make use of the Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work

    Matrix Multiplication and Number on the Forehead Communication

    Get PDF
    Three-player Number On the Forehead communication may be thought of as a three-player Number In the Hand promise model, in which each player is given the inputs that are supposedly on the other two players\u27 heads, and promised that they are consistent with the inputs of the other players. The set of all allowed inputs under this promise may be thought of as an order-3 tensor. We surprisingly observe that this tensor is exactly the matrix multiplication tensor, which is widely studied in the design of fast matrix multiplication algorithms. Using this connection, we prove a number of results about both Number On the Forehead communication and matrix multiplication, each by using known results or techniques about the other. For example, we show how the Laser method, a key technique used to design the best matrix multiplication algorithms, can also be used to design communication protocols for a variety of problems. We also show how known lower bounds for Number On the Forehead communication can be used to bound properties of the matrix multiplication tensor such as its zeroing out subrank. Finally, we substantially generalize known methods based on slice-rank for studying communication, and show how they directly relate to the matrix multiplication exponent ?

    Extremal Combinatorics

    Full text link
    corecore