74 research outputs found

    Monadic Datalog Containment on Trees

    Get PDF
    We show that the query containment problem for monadic datalog on finite unranked labeled trees can be solved in 2-fold exponential time when (a) considering unordered trees using the axes child and descendant, and when (b) considering ordered trees using the axes firstchild, nextsibling, child, and descendant. When omitting the descendant-axis, we obtain that in both cases the problem is EXPTIME-complete.Comment: This article is the full version of an article published in the proccedings of the 8th Alberto Mendelzon Workshop (AMW 2014

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Logic-based Web Information Extraction

    Get PDF

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1

    Monadic Queries over Tree-Structured Data

    Get PDF
    Monadic query languages over trees currently receive considerable interest in the database community, as the problem of selecting nodes from a tree is the most basic and widespread database query problem in the context of XML. Partly a survey of recent work done by the authors and their group on logical query languages for this problem and their expressiveness, this paper provides a number of new results related to the complexity of such languages over so-called axis relations (such as "child" or "descendant") which are motivated by their presence in the XPath standard or by their utility for data extraction (wrapping)

    XPath processing in a nutshell

    Get PDF
    corecore