12,595 research outputs found

    Signal Reconstruction via H-infinity Sampled-Data Control Theory: Beyond the Shannon Paradigm

    Get PDF
    This paper presents a new method for signal reconstruction by leveraging sampled-data control theory. We formulate the signal reconstruction problem in terms of an analog performance optimization problem using a stable discrete-time filter. The proposed H-infinity performance criterion naturally takes intersample behavior into account, reflecting the energy distributions of the signal. We present methods for computing optimal solutions which are guaranteed to be stable and causal. Detailed comparisons to alternative methods are provided. We discuss some applications in sound and image reconstruction

    Sampling from a system-theoretic viewpoint: Part I - Concepts and tools

    Get PDF
    This paper is first in a series of papers studying a system-theoretic approach to the problem of reconstructing an analog signal from its samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a hybrid model-matching problem in which performance is measured by system norms. In this paper we present the paradigm and revise underlying technical tools, such as the lifting technique and some topics of the operator theory. This material facilitates a systematic and unified treatment of a wide range of sampling and reconstruction problems, recovering many hitherto considered different solutions and leading to new results. Some of these applications are discussed in the second part

    A Bode Sensitivity Integral for Linear Time-Periodic Systems

    Get PDF
    Bode's sensitivity integral is a well-known formula that quantifies some of the limitations in feedback control for linear time-invariant systems. In this note, we show that there is a similar formula for linear time-periodic systems. The harmonic transfer function is used to prove the result. We use the notion of roll-off 2, which means that the first time-varying Markov parameter is equal to zero. It then follows that the harmonic transfer function is an analytic operator and a trace class operator. These facts are used to prove the result

    A Note on BIBO Stability

    Full text link
    The statements on the BIBO stability of continuous-time convolution systems found in engineering textbooks are often either too vague (because of lack of hypotheses) or mathematically incorrect. What is more troubling is that they usually exclude the identity operator. The purpose of this note is to clarify the issue while presenting some fixes. In particular, we show that a linear shift-invariant system is BIBO-stable in the LL_\infty-sense if and only if its impulse response is included in the space of bounded Radon measures, which is a superset of L1(R)L_1(\mathbb{R}) (Lebesgue's space of absolutely integrable functions). As we restrict the scope of this characterization to the convolution operators whose impulse response is a measurable function, we recover the classical statement

    Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing

    Full text link
    We present a systematic approach to reveal the correspondence between time delay dynamics and networks of coupled oscillators. After early demonstrations of the usefulness of spatio-temporal representations of time-delay system dynamics, extensive research on optoelectronic feedback loops has revealed their immense potential for realizing complex system dynamics such as chimeras in rings of coupled oscillators and applications to reservoir computing. Delayed dynamical systems have been enriched in recent years through the application of digital signal processing techniques. Very recently, we have showed that one can significantly extend the capabilities and implement networks with arbitrary topologies through the use of field programmable gate arrays (FPGAs). This architecture allows the design of appropriate filters and multiple time delays which greatly extend the possibilities for exploring synchronization patterns in arbitrary topological networks. This has enabled us to explore complex dynamics on networks with nodes that can be perfectly identical, introduce parameter heterogeneities and multiple time delays, as well as change network topologies to control the formation and evolution of patterns of synchrony

    Spatio-temporal generalised frequency response functions over unbounded spatial domains

    Get PDF
    The concept of generalised frequency response functions (GFRFs), which were developed for nonlinear system identification and analysis, is extended to continuous spatio-temporal dynamical systems normally described by partial differential equations (PDEs). The paper provides the definitions and interpretation of spatio-temporal generalised frequency response functions for linear and nonlinear spatio-temporal systems, defined over unbounded spatial domains, based on an impulse response procedure. A new probing method is also developed to calculate the GFRFs. Both the Diffusion equation and Fisher’s equation are analysed to illustrate the new frequency domain methods
    corecore