13,749 research outputs found

    Weak Field Expansion of Gravity: Graphs, Matrices and Topology

    Get PDF
    We present some approaches to the perturbative analysis of the classical and quantum gravity. First we introduce a graphical representation for a global SO(n) tensor (\pl)^d h_\ab, which generally appears in the weak field expansion around the flat space: g_\mn=\del_\mn+h_\mn. Making use of this representation, we explain 1) Generating function of graphs (Feynman diagram approach), 2) Adjacency matrix (Matrix approach), 3) Graphical classification in terms of "topology indices" (Topology approach), 4) The Young tableau (Symmetric group approach). We systematically construct the global SO(n) invariants. How to show the independence and completeness of those invariants is the main theme. We explain it taking simple examples of \pl\pl h-, {and} (\pl\pl h)^2- invariants in the text. The results are applied to the analysis of the independence of general invariants and (the leading order of) the Weyl anomalies of scalar-gravity theories in "diverse" dimensions (2,4,6,8,10 dimensions).Comment: 41pages, 26 figures, Latex, epsf.st

    Volume of representation varieties

    Full text link
    We introduce the notion of volume of the representation variety of a finitely presented discrete group in a compact Lie group using the push-forward measure associated to a map defined by a presentation of the discrete group. We show that the volume thus defined is invariant under the Andrews-Curtis moves of the generators and relators of the discrete group, and moreover, that it is actually independent of the choice of presentation if the difference of the number of generators and the number of relators remains the same. We then calculate the volume of the representation variety of a surface group in an arbitrary compact Lie group using the classical technique of Frobenius and Schur on finite groups. Our formulas recover the results of Witten and Liu on the symplectic volume and the Reidemeister torsion of the moduli space of flat G-connections on a surface up to a constant factor when the Lie group G is semisimple.Comment: 27 pages in AMS-LaTeX forma

    Improved bounds and algorithms for graph cuts and network reliability

    Full text link
    Karger (SIAM Journal on Computing, 1999) developed the first fully-polynomial approximation scheme to estimate the probability that a graph GG becomes disconnected, given that its edges are removed independently with probability pp. This algorithm runs in n5+o(1)ϵ−3n^{5+o(1)} \epsilon^{-3} time to obtain an estimate within relative error ϵ\epsilon. We improve this run-time through algorithmic and graph-theoretic advances. First, there is a certain key sub-problem encountered by Karger, for which a generic estimation procedure is employed, we show that this has a special structure for which a much more efficient algorithm can be used. Second, we show better bounds on the number of edge cuts which are likely to fail. Here, Karger's analysis uses a variety of bounds for various graph parameters, we show that these bounds cannot be simultaneously tight. We describe a new graph parameter, which simultaneously influences all the bounds used by Karger, and obtain much tighter estimates of the cut structure of GG. These techniques allow us to improve the runtime to n3+o(1)ϵ−2n^{3+o(1)} \epsilon^{-2}, our results also rigorously prove certain experimental observations of Karger & Tai (Proc. ACM-SIAM Symposium on Discrete Algorithms, 1997). Our rigorous proofs are motivated by certain non-rigorous differential-equation approximations which, however, provably track the worst-case trajectories of the relevant parameters. A key driver of Karger's approach (and other cut-related results) is a bound on the number of small cuts: we improve these estimates when the min-cut size is "small" and odd, augmenting, in part, a result of Bixby (Bulletin of the AMS, 1974)
    • …
    corecore