143 research outputs found

    Proceedings of the Third International Workshop on Management of Uncertain Data (MUD2009)

    Get PDF

    Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors

    Get PDF
    Meaningful quantification of data and structural uncertainties in conceptual rainfall-runoff modeling is a major scientific and engineering challenge. This paper focuses on the total predictive uncertainty and its decomposition into input and structural components under different inference scenarios. Several Bayesian inference schemes are investigated, differing in the treatment of rainfall and structural uncertainties, and in the precision of the priors describing rainfall uncertainty. Compared with traditional lumped additive error approaches, the quantification of the total predictive uncertainty in the runoff is improved when rainfall and/or structural errors are characterized explicitly. However, the decomposition of the total uncertainty into individual sources is more challenging. In particular, poor identifiability may arise when the inference scheme represents rainfall and structural errors using separate probabilistic models. The inference becomes ill‐posed unless sufficiently precise prior knowledge of data uncertainty is supplied; this ill‐posedness can often be detected from the behavior of the Monte Carlo sampling algorithm. Moreover, the priors on the data quality must also be sufficiently accurate if the inference is to be reliable and support meaningful uncertainty decomposition. Our findings highlight the inherent limitations of inferring inaccurate hydrologic models using rainfall‐runoff data with large unknown errors. Bayesian total error analysis can overcome these problems using independent prior information. The need for deriving independent descriptions of the uncertainties in the input and output data is clearly demonstrated.Benjamin Renard, Dmitri Kavetski, George Kuczera, Mark Thyer, and Stewart W. Frank

    EMPIRICAL COMPARISON OF METHODS FOR THE HIERARCHICAL PROPAGATION OF HYBRID UNCERTAINTY IN RISK ASSESSMENT, IN PRESENCE OF DEPENDENCES

    No full text
    Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, failure rates, ...) that are epistemically-uncertain, i.e., known with poor precision. Whereas aleatory uncertainty is always described by probability distributions, epistemic uncertainty may be represented in different ways (e.g., probabilistic or possibilistic), depending on the information and data available. The work presented in this paper addresses the issue of accounting for (in)dependence relationships between epistemically-uncertain parameters. When a probabilistic representation of epistemic uncertainty is considered, uncertainty propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) simulation approach; instead, when possibility distributions are used, two approaches are undertaken: the hybrid MC and Fuzzy Interval Analysis (FIA) method and the MC-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs). The objectives are: i) studying the effects of (in)dependence between the epistemically-uncertain parameters of the aleatory probability distributions (when a probabilistic/possibilistic representation of epistemic uncertainty is adopted) and ii) studying the effect of the probabilistic/possibilistic representation of epistemic uncertainty (when the state of dependence between the epistemic parameters is defined). The Dependency Bound Convolution (DBC) approach is then undertaken within a hierarchical setting of hybrid (probabilistic and possibilistic) uncertainty propagation, in order to account for all kinds of (possibly unknown) dependences between the random variables. The analyses are carried out with reference to two toy examples, built in such a way to allow performing a fair quantitative comparison between the methods, and evaluating their rationale and appropriateness in relation to risk analysis

    Représentation et combinaison d'informations incertaines : nouveaux résultats avec applications aux études de sûreté nucléaires

    Get PDF
    It often happens that the value of some parameters or variables of a system are imperfectly known, either because of the variability of the modelled phenomena, or because the availableinformation is imprecise or incomplete. Classical probability theory is usually used to treat these uncertainties. However, recent years have witnessed the appearance of arguments pointing to the conclusion that classical probabilities are inadequate to handle imprecise or incomplete information. Other frameworks have thus been proposed to address this problem: the three main are probability sets, random sets and possibility theory. There are many open questions concerning uncertainty treatment within these frameworks. More precisely, it is necessary to build bridges between these three frameworks to advance toward a unified handlingof uncertainty. Also, there is a need of practical methods to treat information, as using these framerowks can be computationally costly. In this work, we propose some answers to these two needs for a set of commonly encountered problems. In particular, we focus on the problems of:- Uncertainty representation- Fusion and evluation of multiple source information- Independence modellingThe aim being to give tools (both of theoretical and practical nature) to treat uncertainty. Some tools are then applied to some problems related to nuclear safety issues.Souvent, les valeurs de certains paramÚtres ou variables d'un systÚme ne sont connues que de façon imparfaite, soit du fait de la variabilité des phénomÚnes physiques que l'on cherche à représenter,soit parce que l'information dont on dispose est imprécise, incomplÚte ou pas complÚtement fiable.Usuellement, cette incertitude est traitée par la théorie classique des probabilités. Cependant, ces derniÚres années ont vu apparaßtre des arguments indiquant que les probabilités classiques sont inadéquates lorsqu'il faut représenter l'imprécision présente dans l'information. Des cadres complémentaires aux probabilités classiques ont donc été proposés pour remédier à ce problÚme : il s'agit, principalement, des ensembles de probabilités, des ensembles aléatoires et des possibilités. Beaucoup de questions concernant le traitement des incertitudes dans ces trois cadres restent ouvertes. En particulier, il est nécessaire d'unifier ces approches et de comprendre les liens existants entre elles, et de proposer des méthodes de traitement permettant d'utiliser ces approches parfois cher en temps de calcul. Dans ce travail, nous nous proposons d'apporter des réponses à ces deux besoins pour une série de problÚme de traitement de l'incertain rencontré en analyse de sûreté. En particulier, nous nous concentrons sur les problÚmes suivants :- Représentation des incertitudes- Fusion/évaluation de données venant de sources multiples- Modélisation de l'indépendanceL'objectif étant de fournir des outils, à la fois théoriques et pratiques, de traitement d'incertitude. Certains de ces outils sont ensuite appliqués à des problÚmes rencontrés en sûreté nucléaire

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B
    • 

    corecore