2,219 research outputs found

    Parallel-Machine Scheduling Problems with Past-Sequence-Dependent Delivery Times and Aging Maintenance

    Get PDF
    We consider parallel-machine scheduling problems with past-sequence-dependent (psd) delivery times and aging maintenance. The delivery time is proportional to the waiting time in the system. Each machine has an aging maintenance activity. We develop polynomial algorithms to three versions of the problem to minimize the total absolute deviation of job completion times, the total load, and the total completion time

    Combining time and position dependent effects on a single machine subject to rate-modifying activities

    Get PDF
    We introduce a general model for single machine scheduling problems, in which the actual processing times of jobs are subject to a combination of positional and time-dependent effects, that are job-independent but additionally depend on certain activities that modify the processing rate of the machine, such as, maintenance. We focus on minimizing two classical objectives: the makespan and the sum of the completion times. The traditional classification accepted in this area of scheduling is based on the distinction between the learning and deterioration effects on one hand, and between the positional effects and the start-time dependent effects on the other hand. Our results show that in the framework of the introduced model such a classification is not necessary, as long as the effects are job-independent. The model introduced in this paper covers most of the previously known models. The solution algorithms are developed within the same general framework and their running times are no worse than those available earlier for problems with less general effects

    Minimizing total completion time on a single machine with step improving jobs

    Get PDF
    Production systems often experience a shock or a technological change, resulting in performance improvement. In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date. This paper considers a single machine scheduling problem with step-improving processing times, where the effects are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer Programming (MIP) model and develop an LP-based heuristic for the general problem. Finally, computational experiments show that the proposed heuristic yields very effective and efficient solutions

    A note on optimization in deteriorating systems using scheduling problems with the aging effect and resource allocation models

    Get PDF
    AbstractThis paper concerns scheduling problems with the aging effect and additional resource allocation. A measurable result of the aging phenomenon is that the time required to perform a job increases whereas the additional resource allocation allows one to decrease it. As an example of a deteriorating system that can be described and optimized by the application of the models and algorithms considered, we choose the pickling process, where cleaning of metal items decreases the efficiency of the pickling (cleaning) bath (i.e., one containing an active substance), whereas heating it up can improve the efficiency. In particular, we focus on the optimization problems for such systems and model them as single-machine scheduling problems with job processing times dependent on the fatigue of a machine and on the allocation of additional resources. The objectives considered are the minimization of time criteria (the maximum completion time and the maximum lateness) under a given resource consumption as well as the minimization of the resource consumption under given time criteria. The computational complexity of the problems is determined and solution properties are proved. On the basis of these, we construct optimal polynomial time algorithms for some cases of the problems considered

    Minimizing total completion time on a single machine with step improving jobs

    Get PDF
    Production systems often experience a shock or a technological change, resulting in performance improvement. In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date. This paper considers a single machine scheduling problem with step-improving processing times, where the effects are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer Programming (MIP) model and develop an LP-based heuristic for the general problem. Finally, computational experiments show that the proposed heuristic yields very effective and efficient solutions

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning
    • …
    corecore