116,029 research outputs found

    Mean Field Games models of segregation

    Full text link
    This paper introduces and analyses some models in the framework of Mean Field Games describing interactions between two populations motivated by the studies on urban settlements and residential choice by Thomas Schelling. For static games, a large population limit is proved. For differential games with noise, the existence of solutions is established for the systems of partial differential equations of Mean Field Game theory, in the stationary and in the evolutive case. Numerical methods are proposed, with several simulations. In the examples and in the numerical results, particular emphasis is put on the phenomenon of segregation between the populations.Comment: 35 pages, 10 figure

    Augmentations and Rulings of Legendrian Knots

    Full text link
    A connection between holomorphic and generating family invariants of Legendrian knots is established; namely, that the existence of a ruling (or decomposition) of a Legendrian knot is equivalent to the existence of an augmentation of its contact homology. This result was obtained independently and using different methods by Fuchs and Ishkhanov. Close examination of the proof yields an algorithm for constructing a ruling given an augmentation. Finally, a condition for the existence of an augmentation in terms of the rotation number is obtained.Comment: 21 pages, 16 figure

    Right-angled billiards and volumes of moduli spaces of quadratic differentials on CPÂą

    No full text

    Oscillator phase noise: a tutorial

    Get PDF
    Linear time-invariant (LTI) phase noise theories provide important qualitative design insights but are limited in their quantitative predictive power. Part of the difficulty is that device noise undergoes multiple frequency translations to become oscillator phase noise. A quantitative understanding of this process requires abandoning the principle of time invariance assumed in most older theories of phase noise. Fortunately, the noise-to-phase transfer function of oscillators is still linear, despite the existence of the nonlinearities necessary for amplitude stabilization. In addition to providing a quantitative reconciliation between theory and measurement, the time-varying phase noise model presented in this tutorial identifies the importance of symmetry in suppressing the upconversion of 1/f noise into close-in phase noise, and provides an explicit appreciation of cyclostationary effects and AM-PM conversion. These insights allow a reinterpretation of why the Colpitts oscillator exhibits good performance, and suggest new oscillator topologies. Tuned LC and ring oscillator circuit examples are presented to reinforce the theoretical considerations developed. Simulation issues and the accommodation of amplitude noise are considered in appendixes

    Computational Methods for the Construction of a Class of Noetherian Operators

    Full text link
    This paper presents some algorithmic techniques to compute explicitly the noetherian operators associated to a class of ideals and modules over a polynomial ring. The procedures we include in this work can be easily encoded in computer algebra packages such as CoCoA and Singular
    • …
    corecore