99 research outputs found

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity

    Get PDF
    We call a (simple) graph G codismantlable if either it has no edges or else it has a codominated vertex x, meaning that the closed neighborhood of x contains that of one of its neighbor, such that G-x codismantlable. We prove that if G is well-covered and it lacks induced cycles of length four, five and seven, than the vertex decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. The rest deals with the computation of Castelnuovo-Mumford regularity of codismantlable graphs. Note that our approach complements and unifies many of the earlier results on bipartite, chordal and very well-covered graphs
    corecore