2,867 research outputs found

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Lower bounds for Max-Cut in HH-free graphs via semidefinite programming

    Get PDF
    For a graph GG, let f(G)f(G) denote the size of the maximum cut in GG. The problem of estimating f(G)f(G) as a function of the number of vertices and edges of GG has a long history and was extensively studied in the last fifty years. In this paper we propose an approach, based on semidefinite programming (SDP), to prove lower bounds on f(G)f(G). We use this approach to find large cuts in graphs with few triangles and in KrK_r-free graphs.Comment: 21 pages, to be published in LATIN 2020 proceedings, Updated version is rewritten to include additional results along with corrections to original argument

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n,p)G(n,p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n,p)G(n,p) with minimum degree at least (25+o(1))pn\big(\frac{2}{5} + o(1)\big)pn is O(p−1n)\mathcal O(p^{-1}n)-close to bipartite, and each spanning triangle-free subgraph of G(n,p)G(n,p) with minimum degree at least (13+ε)pn(\frac{1}{3}+\varepsilon)pn is O(p−1n)\mathcal O(p^{-1}n)-close to rr-partite for some r=r(ε)r=r(\varepsilon). These are random graph analogues of a result by Andr\'asfai, Erd\H{o}s, and S\'os [Discrete Math. 8 (1974), 205-218], and a result by Thomassen [Combinatorica 22 (2002), 591--596]. We also show that our results are best possible up to a constant factor.Comment: 18 page

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author
    • …
    corecore