309 research outputs found

    The Zero-Undetected-Error Capacity Approaches the Sperner Capacity

    Full text link
    Ahlswede, Cai, and Zhang proved that, in the noise-free limit, the zero-undetected-error capacity is lower bounded by the Sperner capacity of the channel graph, and they conjectured equality. Here we derive an upper bound that proves the conjecture.Comment: 8 Pages; added a section on the definition of Sperner capacity; accepted for publication in the IEEE Transactions on Information Theor

    Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications

    Full text link
    Low decoding latency and complexity are two important requirements of channel codes used in many applications, like machine-to-machine communications. In this paper, we show how these requirements can be fulfilled by using some special quasi-cyclic low-density parity-check block codes and spatially coupled low-density parity-check convolutional codes that we denote as compact. They are defined by parity-check matrices designed according to a recent approach based on sequentially multiplied columns. This method allows obtaining codes with girth up to 12. Many numerical examples of practical codes are provided.Comment: 5 pages, 1 figure, presented at IEEE PIMRC 201

    Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders

    Full text link
    Polar codes are a recently proposed family of provably capacity-achieving error-correction codes that received a lot of attention. While their theoretical properties render them interesting, their practicality compared to other types of codes has not been thoroughly studied. Towards this end, in this paper, we perform a comparison of polar decoders against LDPC and Turbo decoders that are used in existing communications standards. More specifically, we compare both the error-correction performance and the hardware efficiency of the corresponding hardware implementations. This comparison enables us to identify applications where polar codes are superior to existing error-correction coding solutions as well as to determine the most promising research direction in terms of the hardware implementation of polar decoders.Comment: Fixes small mistakes from the paper to appear in the proceedings of IEEE WCNC 2017. Results were presented in the "Polar Coding in Wireless Communications: Theory and Implementation" Worksho

    Lengthening and Extending Binary Private Information Retrieval Codes

    Full text link
    It was recently shown by Fazeli et al. that the storage overhead of a traditional tt-server private information retrieval (PIR) protocol can be significantly reduced using the concept of a tt-server PIR code. In this work, we show that a family of tt-server PIR codes (with increasing dimensions and blocklengths) can be constructed from an existing tt-server PIR code through lengthening by a single information symbol and code extension by at most ⌈t/2⌉\bigl\lceil t/2\bigr\rceil code symbols. Furthermore, by extending a code construction notion from Steiner systems by Fazeli et al., we obtain a specific family of tt-server PIR codes. Based on a code construction technique that lengthens and extends a tt-server PIR code simultaneously, a basic algorithm to find good (i.e., small blocklength) tt-server PIR codes is proposed. For the special case of t=5t=5, we find provably optimal PIR codes for code dimensions k≤6k\leq 6, while for all 7≤k≤327\leq k\leq 32 we find codes of smaller blocklength than the best known codes from the literature. Furthermore, in the case of t=8t = 8, we also find better codes for k=5,6,11,12k = 5, 6, 11, 12. Numerical results show that most of the best found 55-server PIR codes can be constructed from the proposed family of codes connected to Steiner systems.Comment: The shorter version of this paper will appear in the proceedings of 2018 International Zurich Seminar on Information and Communicatio

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10−310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10−310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa

    Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

    Full text link
    In this work, we present a concatenated repetition-polar coding scheme that is aimed at applications requiring highly unbalanced unequal bit-error protection, such as the Beam Interlock System of the Large Hadron Collider at CERN. Even though this concatenation scheme is simple, it reveals significant challenges that may be encountered when designing a concatenated scheme that uses a polar code as an inner code, such as error correlation and unusual decision log-likelihood ratio distributions. We explain and analyze these challenges and we propose two ways to overcome them.Comment: Presented at the 51st Asilomar Conference on Signals, Systems, and Computers, November 201

    Blind Detection of Polar Codes

    Full text link
    Polar codes were recently chosen to protect the control channel information in the next-generation mobile communication standard (5G) defined by the 3GPP. As a result, receivers will have to implement blind detection of polar coded frames in order to keep complexity, latency, and power consumption tractable. As a newly proposed class of block codes, the problem of polar-code blind detection has received very little attention. In this work, we propose a low-complexity blind-detection algorithm for polar-encoded frames. We base this algorithm on a novel detection metric with update rules that leverage the a priori knowledge of the frozen-bit locations, exploiting the inherent structures that these locations impose on a polar-encoded block of data. We show that the proposed detection metric allows to clearly distinguish polar-encoded frames from other types of data by considering the cumulative distribution functions of the detection metric, and the receiver operating characteristic. The presented results are tailored to the 5G standardization effort discussions, i.e., we consider a short low-rate polar code concatenated with a CRC.Comment: 6 pages, 8 figures, to appear at the IEEE Int. Workshop on Signal Process. Syst. (SiPS) 201
    • …
    corecore