15,499 research outputs found

    The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance

    Full text link
    For two decades, the Colless index has been the most frequently used statistic for assessing the balance of phylogenetic trees. In this article, this statistic is studied under the Yule and uniform model of phylogenetic trees. The main tool of analysis is a coupling argument with another well-known index called the Sackin statistic. Asymptotics for the mean, variance and covariance of these two statistics are obtained, as well as their limiting joint distribution for large phylogenies. Under the Yule model, the limiting distribution arises as a solution of a functional fixed point equation. Under the uniform model, the limiting distribution is the Airy distribution. The cornerstone of this study is the fact that the probabilistic models for phylogenetic trees are strongly related to the random permutation and the Catalan models for binary search trees.Comment: Published at http://dx.doi.org/10.1214/105051606000000547 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Experimental analysis of the accessibility of drawings with few segments

    Get PDF
    The visual complexity of a graph drawing is defined as the number of geometric objects needed to represent all its edges. In particular, one object may represent multiple edges, e.g., one needs only one line segment to draw two collinear incident edges. We study the question if drawings with few segments have a better aesthetic appeal and help the user to asses the underlying graph. We design an experiment that investigates two different graph types (trees and sparse graphs), three different layout algorithms for trees, and two different layout algorithms for sparse graphs. We asked the users to give an aesthetic ranking on the layouts and to perform a furthest-pair or shortest-path task on the drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Faster Parametric Shortest Path and Minimum Balance Algorithms

    Full text link
    The parametric shortest path problem is to find the shortest paths in graph where the edge costs are of the form w_ij+lambda where each w_ij is constant and lambda is a parameter that varies. The problem is to find shortest path trees for every possible value of lambda. The minimum-balance problem is to find a ``weighting'' of the vertices so that adjusting the edge costs by the vertex weights yields a graph in which, for every cut, the minimum weight of any edge crossing the cut in one direction equals the minimum weight of any edge crossing the cut in the other direction. The paper presents fast algorithms for both problems. The algorithms run in O(nm+n^2 log n) time. The paper also describes empirical studies of the algorithms on random graphs, suggesting that the expected time for finding a minimum-mean cycle (an important special case of both problems) is O(n log(n) + m)

    On balanced planar graphs, following W. Thurston

    Full text link
    Let f:S2S2f:S^2\to S^2 be an orientation-preserving branched covering map of degree d2d\geq 2, and let Σ\Sigma be an oriented Jordan curve passing through the critical values of ff. Then Γ:=f1(Σ)\Gamma:=f^{-1}(\Sigma) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ\Gamma, where ff has 2d22d-2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.Comment: 17 page

    Directed nonabelian sandpile models on trees

    Full text link
    We define two general classes of nonabelian sandpile models on directed trees (or arborescences) as models of nonequilibrium statistical phenomena. These models have the property that sand grains can enter only through specified reservoirs, unlike the well-known abelian sandpile model. In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.Comment: 43 pages, 5 figures; introduction improve

    Statistics of planar graphs viewed from a vertex: A study via labeled trees

    Full text link
    We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the information on the geodesic distance from the origin. In the case of infinitely large graphs, we give in particular explicit formulas for the probabilities that the origin have given numbers of neighboring edges and/or vertices, as well as explicit values for the corresponding moments.Comment: 36 pages, 15 figures, tex, harvmac, eps
    corecore