1,209 research outputs found

    B\'ezier curves that are close to elastica

    Full text link
    We study the problem of identifying those cubic B\'ezier curves that are close in the L2 norm to planar elastic curves. The problem arises in design situations where the manufacturing process produces elastic curves; these are difficult to work with in a digital environment. We seek a sub-class of special B\'ezier curves as a proxy. We identify an easily computable quantity, which we call the lambda-residual, that accurately predicts a small L2 distance. We then identify geometric criteria on the control polygon that guarantee that a B\'ezier curve has lambda-residual below 0.4, which effectively implies that the curve is within 1 percent of its arc-length to an elastic curve in the L2 norm. Finally we give two projection algorithms that take an input B\'ezier curve and adjust its length and shape, whilst keeping the end-points and end-tangent angles fixed, until it is close to an elastic curve.Comment: 13 pages, 15 figure

    A variational model for data fitting on manifolds by minimizing the acceleration of a B\'ezier curve

    Get PDF
    We derive a variational model to fit a composite B\'ezier curve to a set of data points on a Riemannian manifold. The resulting curve is obtained in such a way that its mean squared acceleration is minimal in addition to remaining close the data points. We approximate the acceleration by discretizing the squared second order derivative along the curve. We derive a closed-form, numerically stable and efficient algorithm to compute the gradient of a B\'ezier curve on manifolds with respect to its control points, expressed as a concatenation of so-called adjoint Jacobi fields. Several examples illustrate the capabilites and validity of this approach both for interpolation and approximation. The examples also illustrate that the approach outperforms previous works tackling this problem

    High-order adaptive methods for computing invariant manifolds of maps

    Get PDF
    The author presents efficient and accurate numerical methods for computing invariant manifolds of maps which arise in the study of dynamical systems. In order to decrease the number of points needed to compute a given curve/surface, he proposes using higher-order interpolation/approximation techniques from geometric modeling. He uses B´ezier curves/triangles, fundamental objects in curve/surface design, to create adaptive methods. The methods are based on tolerance conditions derived from properties of B´ezier curves/triangles. The author develops and tests the methods for an ordinary parametric curve; then he adapts these methods to invariant manifolds of planar maps. Next, he develops and tests the method for parametric surfaces and then he adapts this method to invariant manifolds of three-dimensional maps

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction

    Preserving Derivative Information while Transforming Neuronal Curves

    Full text link
    The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces under random diffeomorphisms. Our method is freely available in our open-source Python package brainlit

    Constructing G1 quadratic Bezier curves with arbitrary endpoint tangent vectors

    Get PDF
    International audienceQuadratic BĂ©zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic BĂ©zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing G1 quadratic BĂ©zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the G1 quadratic BĂ©zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs
    • …
    corecore