520 research outputs found

    Asymmetric 22-colorings of graphs

    Full text link
    We show that the edges of every 3-connected planar graph except K4K_4 can be colored with two colors in such a way that the graph has no color preserving automorphisms. Also, we characterize all graphs which have the property that their edges can be 22-colored so that no matter how the graph is embedded in any orientable surface, there is no homeomorphism of the surface which induces a non-trivial color preserving automorphism of the graph

    Color-blind index in graphs of very low degree

    Get PDF
    Let c:E(G)[k]c:E(G)\to [k] be an edge-coloring of a graph GG, not necessarily proper. For each vertex vv, let cˉ(v)=(a1,,ak)\bar{c}(v)=(a_1,\ldots,a_k), where aia_i is the number of edges incident to vv with color ii. Reorder cˉ(v)\bar{c}(v) for every vv in GG in nonincreasing order to obtain c(v)c^*(v), the color-blind partition of vv. When cc^* induces a proper vertex coloring, that is, c(u)c(v)c^*(u)\neq c^*(v) for every edge uvuv in GG, we say that cc is color-blind distinguishing. The minimum kk for which there exists a color-blind distinguishing edge coloring c:E(G)[k]c:E(G)\to [k] is the color-blind index of GG, denoted dal(G)\operatorname{dal}(G). We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if dal(G)2\operatorname{dal}(G) \leq 2 is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when dal(G)\operatorname{dal}(G) is finite for a class of 3-regular graphs.Comment: 10 pages, 3 figures, and a 4 page appendi
    corecore