10,708 research outputs found

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    Practical solutions for a dock assignment problem with trailer transportation.

    Get PDF
    We study a distribution warehouse in which trailers need to be assigned to docks for loading or unloading. A parking lot is used as a buffer zone and transportation between the parking lot and the docks is performed by auxiliary resources called terminal tractors. Each incoming trailer has a known arrival time and each outgoing trailer a desired departure time. The primary objective is to produce a docking schedule such that the weighted sum of the number of late outgoing trailers and the tardiness of these trailers is minimized; the secondary objective is to minimize the weighted completion time of all trailers, both incoming and outgoing. The purpose of this paper is to produce high-quality solutions to large instances that are comparable to a real-life case. We implement several heuristic algorithms: truncated branch and bound, beam search and tabu search. Lagrangian relaxation is embedded in the algorithms for constructing an initial solution and for computing lower bounds. The different solution frameworks are compared via extensive computational experiments.Dock assignment; Multicriteria scheduling; Branch and bound; Beam search; Lagrangian relaxation; Tabu search;

    Machine scheduling and Lagrangian relaxation

    Get PDF

    Sequencing spinning lines

    Get PDF

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    NEH-based heuristics for the permutation flowshop scheduling problem to minimize total tardiness

    Get PDF
    Since Johnson׳s seminal paper in 1954, scheduling jobs in a permutation flowshop has been receiving the attention of hundreds of practitioners and researchers, being one of the most studied topics in the Operations Research literature. Among the different objectives that can be considered, minimising the total tardiness (i.e. the sum of the surplus of the completion time of each job over its due date) is regarded as a key objective for manufacturing companies, as it entails the fulfilment of the due dates committed to customers. Since this problem is known to be NP-hard, most research has focused on proposing approximate procedures to solve it in reasonable computation times. Particularly, several constructive heuristics have been proposed, with NEHedd being the most efficient one, serving also to provide an initial solution for more elaborate approximate procedures. In this paper, we first analyse in detail the decision problem depending on the generation of the due dates of the jobs, and discuss the similarities with different related decision problems. In addition, for the most characteristic tardiness scenario, the analysis shows that a huge number of ties appear during the construction of the solutions done by the NEHedd heuristic, and that wisely breaking the ties greatly influences the quality of the final solution. Since no tie-breaking mechanism has been designed for this heuristic up to now, we propose several mechanisms that are exhaustively tested. The results show that some of them outperform the original NEHedd by about 25% while keeping the same computational requirements.Ministerio de Ciencia e Innovación DPI2010-15573/DPIMinisterio de Ciencia e Innovación DPI2013-44461-P/DP

    The single machine earliness and tardiness scheduling problem: lower bounds and a branch-and-bound algorithm

    Get PDF
    This paper addresses the single machine scheduling problem with a common due date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the previous studies in the literature deal with this problem using heuristics and metaheuristics approaches. With the intention of contributing to the study of this problem, a branch-and-bound algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are introduced. The proposed approach is examined through a computational comparative study with 280 problems involving different due date scenarios. In addition, the values of optimal solutions for small problems from a known benchmark are provided.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP[06/03496-3]""Conselho Nacional de Desenvolvimento Cientifico e Tecnologico"" - CNPq[486124/2007-0]""Conselho Nacional de Desenvolvimento Cientifico e Tecnologico"" - CNPq[307399/2006-0
    corecore