28 research outputs found

    An extension of Turán's theorem, uniqueness and stability

    Get PDF
    We determine the maximum number of edges of an n -vertex graph G with the property that none of its r -cliques intersects a fixed set M⊂V(G) . For (r−1)|M|≥n , the (r−1) -partite Turán graph turns out to be the unique extremal graph. For (r−1)|M|<n , there is a whole family of extremal graphs, which we describe explicitly. In addition we provide corresponding stability results

    Bibliographie

    Get PDF

    Phase transitions in the Ramsey-Turán theory

    Get PDF
    Let f(n) be a function and L be a graph. Denote by RT(n, L, f(n)) the maximum number of edges of an L-free graph on n vertices with independence number less than f(n). Erdos and Sós asked if RT (n, K5, c√ n) = o (n2) for some constant c. We answer this question by proving the stronger RT(n, K5, o (√n log n)) = o(n2). It is known that RT (n, K5, c√n log n )= n2/4 + o (n2) for c > 1, so one can say that K5 has a Ramsey-Turán-phase transition at c√n log n. We extend this result to several other Kp's and functions f(n), determining many more phase transitions. We shall formulate several open problems, in particular, whether variants of the Bollobás-Erdos graph, which is a geometric construction, exist to give good lower bounds on RT (n, Kp, f(n)) for various pairs of p and f(n). These problems are studied in depth by Balogh-HuSimonovits, where among others, the Szemerédi's Regularity Lemma and the Hypergraph Dependent Random Choice Lemma are used.National Science Foundatio

    Turán problems in graphs and hypergraphs

    Get PDF
    Mantel's theorem says that among all triangle-free graphs of a given order the balanced complete bipartite graph is the unique graph of maximum size. In Chapter 2, we prove an analogue of this result for 3-graphs (3-uniform hy¬pergraphs) together with an associated stability result. Let K− 4 , F5 and F6 be 3-graphs with vertex sets {1, 2,3, 4}, {1, 2,3,4, 5} and {1, 2,3,4, 5, 6} re¬spectively and edge sets E(K−4 ) = {123, 124, 134}, E(F5) = {123, 124, 345}, E(F6) = {123, 124,345, 156} and F = {K4, F6}. For n =6 5 the unique F-free 3-graph of order n and maximum size is the balanced complete tri¬partite 3-graph S3(n). This extends an old result of Bollobas that S3(n) is the unique 3-graph of maximum size with no copy of K− 4 or F5. In 1941, Turán generalised Mantel's theorem to cliques of arbitrary size and then asked whether similar results could be obtained for cliques on hyper-graphs. This has become one of the central unsolved problems in the field of extremal combinatorics. In Chapter 3, we prove that the Turán density of K(3) 5 together with six other induced subgraphs is 3/4. This is analogous to a similar result obtained for K(3) 4 by Razborov. In Chapter 4, we consider various generalisations of the Turán density. For example, we prove that, if the density in C of ¯P3 is x and C is K3-free, then |E(C)| /(n ) ≤ 1/4+(1/4)J1 − (8/3)x. This is motivated by the observation 2 that the extremal graph for K3 is ¯P3-free, so that the upper bound is a natural extension of a stability result for K3. The question how many edges can be deleted from a blow-up of H before it is H-free subject to the constraint that the same proportion of edges are deleted from each connected pair of vertex sets has become known as the Turán density problem. In Chapter 5, using entropy compression supplemented with some analytic methods, we derive an upper bound of 1 − 1/('y(Δ(H) − /3)), where Δ(H) is the maximum degree of H, 3 ≤ 'y < 4 and /3 ≤ 1. The new bound asymptotically approaches the existing best upper bound despite being derived in a completely different way. The techniques used in these results, illustrating their breadth and connec¬tions between them, are set out in Chapter 1

    On an identity of Shih-Chieh Chu

    Get PDF

    Grafos com poucos cruzamentos e o número de cruzamentos do Kp,q em superfícies topológicas

    Get PDF
    Orientador: Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O número de cruzamentos de um grafo G em uma superfície ? é o menor número de cruzamentos de arestas dentre todos os possíveis desenhos de G em ?. Esta tese aborda dois problemas distintos envolvendo número de cruzamentos de grafos: caracterização de grafos com número de cruzamentos igual a um e determinação do número de cruzamentos do Kp,q em superfícies topológicas. Para grafos com número de cruzamentos um, apresentamos uma completa caracterização estrutural. Também desenvolvemos um algoritmo "prático" para reconhecer estes grafos. Em relação ao número de cruzamentos do Kp,q em superfícies, mostramos que para um inteiro positivo p e uma superfície ? fixos, existe um conjunto finito D(p,?) de desenhos "bons" de grafos bipartidos completos Kp,r (possivelmente variando o r) tal que, para todo inteiro q e todo desenho D de Kp,q, existe um desenho bom D' de Kp,q obtido através de duplicação de vértices de um desenho D'' em D(p,?) tal que o número de cruzamentos de D' é menor ou igual ao número de cruzamentos de D. Em particular, para todo q suficientemente grande, existe algum desenho do Kp,q com o menor número de cruzamentos possível que é obtido a partir de algum desenho de D(p,?) através da duplicação de vértices do mesmo. Esse resultado é uma extensão de outro obtido por Cristian et. al. para esferaAbstract: The crossing number of a graph G in a surface ? is the least amount of edge crossings among all possible drawings of G in ?. This thesis deals with two problems on crossing number of graphs: characterization of graphs with crossing number one and determining the crossing number of Kp,q in topological surfaces. For graphs with crossing number one, we present a complete structural characterization. We also show a "practical" algorithm for recognition of such graphs. For the crossing number of Kp,q in surfaces, we show that for a fixed positive integer p and a fixed surface ?, there is a finite set D(p,?) of good drawings of complete bipartite graphs Kp,r (with distinct values of r) such that, for every positive integer q and every good drawing D of Kp,q, there is a good drawing D' of Kp,q obtained from a drawing D'' of D(p,?) by duplicating vertices of D'' and such that the crossing number of D' is at most the crossing number of D. In particular, for any large enough q, there exists some drawing of Kp,q with fewest crossings which can be obtained from a drawing of D(p,?) by duplicating vertices. This extends a result of Christian et. al. for the sphereDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/14375-9FAPES
    corecore