10,562 research outputs found

    The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation

    Full text link
    The paper is to reveal the direct links between the well known Sylvester equation in matrix theory and some integrable systems. Using the Sylvester equation KM+MK=rsT\boldsymbol{K} \boldsymbol{M}+\boldsymbol{M} \boldsymbol{K}=\boldsymbol{r}\, \boldsymbol{s}^{T} we introduce a scalar function S(i,j)=sTKj(I+M)1KirS^{(i,j)}=\boldsymbol{s}^{T}\, \boldsymbol{K}^j(\boldsymbol{I}+\boldsymbol{M})^{-1}\boldsymbol{K}^i\boldsymbol{r} which is defined as same as in discrete case. S(i,j)S^{(i,j)} satisfy some recurrence relations which can be viewed as discrete equations and play indispensable roles in deriving continuous integrable equations. By imposing dispersion relations on r\boldsymbol{r} and s\boldsymbol{s}, we find the Korteweg-de Vries equation, modified Korteweg-de Vries equation, Schwarzian Korteweg-de Vries equation and sine-Gordon equation can be expressed by some discrete equations of S(i,j)S^{(i,j)} defined on certain points. Some special matrices are used to solve the Sylvester equation and prove symmetry property S(i,j)=S(i,j)S^{(i,j)}=S^{(i,j)}. The solution M\boldsymbol{M} provides τ\tau function by τ=I+M\tau=|\boldsymbol{I}+\boldsymbol{M}|. We hope our results can not only unify the Cauchy matrix approach in both continuous and discrete cases, but also bring more links for integrable systems and variety of areas where the Sylvester equation appears frequently.Comment: 23 page

    Solution of polynomial Lyapunov and Sylvester equations

    No full text
    A two-variable polynomial approach to solve the one-variable polynomial Lyapunov and Sylvester equations is proposed. Lifting the problem from the one-variable to the two-variable context gives rise to associated lifted equations which live on finite-dimensional vector spaces. This allows for the design of an iterative solution method which is inspired by the method of Faddeev for the computation of matrix resolvents. The resulting algorithms are especially suitable for applications requiring symbolic or exact computation

    On hyperbolic systems with time dependent H\"older characteristics

    Get PDF
    In this paper we study the well-posedness of weakly hyperbolic systems with time dependent coefficients. We assume that the eigenvalues are low regular, in the sense that they are H\"older with respect to tt. In the past these kind of systems have been investigated by Yuzawa \cite{Yu:05} and Kajitani \cite{KY:06} by employing semigroup techniques (Tanabe-Sobolevski method). Here, under a certain uniform property of the eigenvalues, we improve the Gevrey well-posedness result of \cite{Yu:05} and we obtain well-posedness in spaces of ultradistributions as well. Our main idea is a reduction of the system to block Sylvester form and then the formulation of suitable energy estimates inspired by the treatment of scalar equations in \cite{GR:11

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    Solvability and uniqueness criteria for generalized Sylvester-type equations

    Full text link
    We provide necessary and sufficient conditions for the generalized \star-Sylvester matrix equation, AXB+CXD=EAXB + CX^\star D = E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A,B,C,DA, B, C, D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the existence and uniqueness of solution for generalized Sylvester and \star-Sylvester equations.Comment: This new version corrects some inaccuracies in corollaries 7 and
    corecore