128 research outputs found

    Local strong maximal monotonicity and full stability for parametric variational systems

    Full text link
    The paper introduces and characterizes new notions of Lipschitzian and H\"olderian full stability of solutions to general parametric variational systems described via partial subdifferential and normal cone mappings acting in Hilbert spaces. These notions, postulated certain quantitative properties of single-valued localizations of solution maps, are closely related to local strong maximal monotonicity of associated set-valued mappings. Based on advanced tools of variational analysis and generalized differentiation, we derive verifiable characterizations of the local strong maximal monotonicity and full stability notions under consideration via some positive-definiteness conditions involving second-order constructions of variational analysis. The general results obtained are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions

    Second-order subdifferential calculus with applications to tilt stability in optimization

    Get PDF
    The paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main attention is paid to the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of frst-order subdifferential mappings. We develop an extended second-order subdifferential calculus and analyze the basic second-order qualification condition ensuring the fulfillment of the principal secondorder chain rule for strongly and fully amenable compositions. The calculus results obtained in this way and computing the second-order subdifferentials for piecewise linear-quadratic functions and their major specifications are applied then to the study of tilt stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms

    An Implicit-Function Theorem for B-Differentiable Functions

    Get PDF
    A function from one normed linear space to another is said to be Bouligand differentiable (B-differentiable) at a point if it is directionally differentiable there in every direction, and if the directional derivative has a certain uniformity property. This is a weakening of the classical idea of Frechet (F-) differentiability, and it is useful in dealing with optimization problems and in other situations in which F-differentiability may be too strong. In this paper we introduce a concept of strong B-derivative, and we employ this idea to prove an implicit-function theorem for B-differentiable functions. This theorem provides the same kinds of information as does the classical implicit-function theorem, but with B-differentiability in place of F-differentiability. Therefore it is applicable to a considerably wider class of functions than is the classical theorem
    • …
    corecore