155 research outputs found

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    REDUCTION OF THE BERGE-FULKERSON CONJECTURE TO CYCLICALLY 5-EDGE-CONNECTED SNARKS

    Get PDF
    The Berge-Fulkerson conjecture, originally formulated in the language of mathematical programming, asserts that the edges of every bridgeless cubic (3-valent) graph can be covered with six perfect matchings in such a way that every edge is in exactly two of them. As with several other classical conjectures in graph theory, every counterexample to the Berge-Fulkerson conjecture must be a non-3-edge-colorable cubic graph. In contrast to Tutte's 5-flow conjecture and the cycle double conjecture, no nontrivial reduction is known for the Berge-Fulkerson conjecture. In the present paper, we prove that a possible minimum counterexample to the conjecture must be cyclically 5-edge-connected

    Normal 6-edge-colorings of some bridgeless cubic graphs

    Full text link
    In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors such that each edge of the graph is normal. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 77-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 66-edge-coloring. Finally, we show that any bridgeless cubic graph GG admits a 66-edge-coloring such that at least 79E\frac{7}{9}\cdot |E| edges of GG are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1804.0944

    Normal edge-colorings of cubic graphs

    Get PDF
    A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors having the additional property that when looking at the set of colors assigned to any edge ee and the four edges adjacent it, we have either exactly five distinct colors or exactly three distinct colors. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal kk-edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. More precisely, it is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture and then, among others, Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the larger class of all simple cubic graphs (not necessarily bridgeless), some interesting questions naturally arise. For instance, there exist simple cubic graphs, not bridgeless, with χN(G)=7\chi'_{N}(G)=7. On the other hand, the known best general upper bound for χN(G)\chi'_{N}(G) was 99. Here, we improve it by proving that χN(G)7\chi'_{N}(G)\leq7 for any simple cubic graph GG, which is best possible. We obtain this result by proving the existence of specific no-where zero Z22\mathbb{Z}_2^2-flows in 44-edge-connected graphs.Comment: 17 pages, 6 figure

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    Berge - Fulkerson Conjecture And Mean Subtree Order

    Get PDF
    Let GG be a graph, V(G)V (G) and E(G)E(G) be the vertex set and edge set of GG, respectively. A perfect matching of GG is a set of edges, ME(G)M\subseteq E(G), such that each vertex in GG is incident with exactly one edge in MM. An rr-regular graph is said to be an rr-graph if (X)r|\partial(X)| \geq r for each odd set XV(G)X \subseteq V(G), where (X)|\partial(X)| denotes the set of edges with precisely one end in XX. One of the most famous conjectures in Matching Theory, due to Berge, states that every 3-graph GG has five perfect matchings such that each edge of GG is contained in at least one of them. Likewise, generalization of the Berge Conjecture given, by Seymour, asserts that every rr-graph GG has 2r12r-1 perfect matchings that covers each eE(G)e \in E(G) at least once. In the first part of this thesis, I will provide a lower bound to number of perfect matchings needed to cover the edge set of an rr-graph. I will also present some new conjectures that might shade a light towards the generalized Berge conjecture. In the second part, I will present a proof of a conjecture stating that there exists a pair of graphs GG and HH with HGH\supset G, V(H)=V(G)V(H)=V(G) and E(H)=E(G)+k|E(H)| = |E(G)| +k such that mean subtree order of HH is smaller then mean subtree order of GG
    corecore