627 research outputs found

    Wave-Shaped Round Functions and Primitive Groups

    Get PDF
    Round functions used as building blocks for iterated block ciphers, both in the case of Substitution-Permutation Networks and Feistel Networks, are often obtained as the composition of different layers which provide confusion and diffusion, and key additions. The bijectivity of any encryption function, crucial in order to make the decryption possible, is guaranteed by the use of invertible layers or by the Feistel structure. In this work a new family of ciphers, called wave ciphers, is introduced. In wave ciphers, round functions feature wave functions, which are vectorial Boolean functions obtained as the composition of non-invertible layers, where the confusion layer enlarges the message which returns to its original size after the diffusion layer is applied. This is motivated by the fact that relaxing the requirement that all the layers are invertible allows to consider more functions which are optimal with regard to non-linearity. In particular it allows to consider injective APN S-boxes. In order to guarantee efficient decryption we propose to use wave functions in Feistel Networks. With regard to security, the immunity from some group-theoretical attacks is investigated. In particular, it is shown how to avoid that the group generated by the round functions acts imprimitively, which represent a serious flaw for the cipher

    A Note on Cyclic Codes from APN Functions

    Full text link
    Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in \cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions over finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions f(x)=xqm−2f(x)=x^{q^m-2} and the Dobbertin APN function f(x)=x24i+23i+22i+2i−1f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence s∞s^{\infty} defined by st=Tr((1+αt)e)s_t=Tr((1+\alpha^t)^e), where α\alpha is a primitive element in GF(q)GF(q). These techniques can also be applied into other open problems in \cite{D}
    • …
    corecore