16 research outputs found

    Hybrid-fuzzy techniques with flexibility and attitudinal parameters for supporting early product design and reliability management

    Get PDF
    The main aim of the research work presented in this thesis is to define and develop novel Hybrid Fuzzy-based techniques for supporting aspects of product development engineering, specifically product reliability at the early phase of product design under the design for reliability philosophy and concept designs assessment problems when the required information is rough and incomplete. Thus, to achieve the above-stated aim, which has been formulated in the effort to filling the identified gaps in the literature which comprise of the need for a holistic, flexible and adjustable method to facilitate and support product design concept assessment and product reliability at the early product design phase. The need for the incorporation of the attitudinal character of the DMs into the product reliability and design concept assessment and finally, the need to account for the several interrelated complex attributes in the product reliability and design concept assessment process. A combination of research methods has been employed which includes an extensive literature review, multiple case study approach, and personal interview of experts, through which data were, collected that provided information for the real-life case study. With the new Hybrid Fuzzy-based techniques (i.e. the intuitionistic fuzzy TOPSIS model which is based on an exponential-related function (IF-TOPSISEF) and the Multi-attribute group decision-making (MAGDM) method which is based on a generalized triangular intuitionistic fuzzy geometric averaging (GTIFGA) operator), a more robust method for the product reliability and design concepts assessment respectively have been achieved as displayed in the comparative analysis in the thesis. The new methods have provided a more complete and a holistic view of the assessment process, by looking at the product reliability and design concept assessment from different scenario depending on the interest of the DMs. Using the above methods, the thesis has been able to evaluated some complex mechanical systems in literature and in real-life including Crawler Crane Machine and Forklift Truck for design change with the purpose of gaining appropriate reliability knowledge and information needed at the early product design phase, and that can subsequently aid and improve the product design concepts after all such useful information have been added into the new design. With the application of the new methods, and their proven feasibility and rationality as displayed in the assessment results of the complex mechanical systems in literature and that of the real-life case studies, this thesis, therefore, can conclude that the Hybrid Fuzzy-based techniques proposed, has provided a better and a novel alternative to existing product reliability and design concepts assessment methods

    Solving P - Norm Intuitionistic Fuzzy Programming Problem

    Full text link
    In this paper, notion of p - norm generalized trapezoidal intuitionistic fuzzy numbers is introduced. A new ranking method is introduced for p - norm generalized trapezoidal intuitionistic fuzzy numbers. Also we consider linear programming problem in intuitionistic fuzzy environment. In this problem, all the coefficients and variables are represented by p - norm generalized trapezoidal intuitionistic fuzzy numbers. To overcome the limitations of the existing methods, a new method is proposed to compute the intuitionistic fuzzy optimal solution for intuitionistic fuzzy linear programming problem. An illustrative numerical example is solved to demonstrate the efficiency of the proposed approach.Comment: some erro

    Extension of Axiomatic Design Principles for Multicriteria Decision Making Problems in Intuitionistic Fuzzy Environment

    Get PDF
    Axiomatic Design (AD) principles have been used to resolve the multicriteria decision making (MCDM) problems in engineering. With respect to MCDM problems in intuitionistic fuzzy environment, in which the criteria values take the form of intuitionistic fuzzy numbers, a new MCDM method is developed. Firstly, the approach proposed by Chen is extended to aggregate the decision makers’ opinions in intuitionistic fuzzy environment. Secondly, membership common area and nonmembership common area are derived from the membership probability density function and the nonmembership probability density function, respectively. Then the membership information content and nonmembership information content are obtained based on the basic ideal of axiomatic design principles. Afterwards, the score function S and accuracy function H in intuitionistic fuzzy sets are extended with the information content to compare the alternatives. The alternatives that have the lowest values of functions of S and H are the best. Finally, a numerical example is used to illustrate the availability of the proposed method

    Risk Assessment of LNG Storages using LOPA and FTA: An Integrated Approach

    Get PDF
    PresentationLiquefied Natural Gas (LNG), an economically attractive and environmental friendly fuel is the current energy alternative across the globe. Its market potential and high demand is felt currently in the Indian subcontinent as well. Government and private players are seriously getting into this energy option and establishing many LNG facilities on the west and east coast of India. While establishing in this new energy sector it is vital to identify and analyse the safety hazards likely to affect public and environment. LNG being a flammable chemical, loss of its containment manifests to consequences in terms of fire, explosion and other impacts. There are several methods currently available to carry out the risk analysis of such projects. LOPA is a quick and simple technique applied to determine the risk by estimate consequence frequencies. But application of LOPA becomes constrained when failures are compound and safety systems are integrated. Fault Tree Analysis (FTA) was integrated into LOPA to eliminate this draw back. FTA was used to find out the probability of failure on demand (PFD) of integrated protection layers. This FTA-LOPA integrated approach was used as an effective tool in this work to study hazard potentials and estimate the consequences due to such hazards. Based on the technical specifications provided and description of the work, the LOC scenarios are identified in the facility from the HAZOP study

    Configuring electrochemical 3D printer for PCB production

    Get PDF
    In this document I look at an electrochemical 3D printer and compare it to a more established machine for the making of printing printed circuit board

    A Novel Distance between Vague Sets and Its Applications in Decision Making

    Get PDF
    A novel distance between vague sets (VSs) is presented after the inadequacies of existing distance measures between vague sets are analyzed by artificial vague sets. The proposed method investigates the assignment of degree of hesitation to the membership and nonmembership degree, and the properties are also discussed. The performances of the new method are illustrated by pattern classification problem. Finally, the proposed method is applied into multicriteria fuzzy decision making, where the linear programming method is taken to generate optimal weights for every criterion and the best alternative is obtained by the weighted sum of distance measures between each alternative and the idea alternative with respect to a set of criteria. The experimental results show the effectiveness of the proposed method

    A comprehensive framework for risk probability assessment of landfill fire incidents using fuzzy fault tree analysis

    Get PDF
    Landfill fire is the most frequent type of incidents in the waste management complexes. This paper presents a new framework for risk probability evaluation of major fires in landfills using the fuzzy fault tree analysis. The framework starts with construction of the fault tree of landfill fire comprised of 38 basic and 22 intermediate events with the corresponding type of faults under managerial, executive, human, and environmental conditions. Fault tree quantitative analysis is carried out through a combination of fuzzy set theory and experts' judgements to overcome the lack of data limitation. Two new sensitivity analysis approaches are used to identify the critical fault type and critical paths in the fault tree. The proposed framework is demonstrated by its application to a real-world case of a landfill in Iran. The results show the probability of a major "fire incident" is 5.5% in which "fire occurrence" stands for 25% higher than "lack of preparation for controlling fire". In addition, "Waste’s uncontrolled dumping" is recognised as the highest critical event by 6% for probability failure and 24% for importance degree. "Executive fault" also found as the most fault’s critical type by frequency analysis of failure probability. The results also reveal the major impact of the experts’ weights, especially for events related to human or management faults. These results can give decision-makers a profound insight into providing effective intervention strategies for minimising the risk of major landfill fire incidents

    Validating the Operating Window Concept for Robustness on a Circuit Board Stencil Printing Process

    Get PDF
    The lifecycle of a system is dependent on the system design. However, the concern with quality has been stressed mostly during its production and use. The understanding of the system variability generated by noise variables shifted the quality focus to the design phase. The development of robustness early on the system lifecycle increases the system reliability through its entire life cycle. Although the robust design approach developed by the Taguchi methods application had a great contribution to this philosophy, there is much criticism of this methodology. One alternative to the Taguchi method is the Operating Window methodology. Its application has successfully been demonstrated as a substitute for the Taguchi methods, especially when the response is not quantitative. However, most of the examples were used repeatedly and the steps on the application of the methodology have not been well detailed. Therefore, this project had the objective of developing a unique application of the methodology with a simple approach. Moreover, with the implementation of the methodology, the project aims to identify the difference between a design with a wide output data distribution and a design with a narrow distribution. The methodology followed the Operating Window methodology steps, applying it to a circuit board printing process. The results have shown that it is possible to have a relationship between the Operating Window range and the distribution variation from the system output

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    Fault Tree Analysis: a survey of the state-of-the-art in modeling, analysis and tools

    Get PDF
    Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables present a quick overview of results
    corecore