181 research outputs found

    Incremental Distance Transforms (IDT)

    Get PDF
    A new generic scheme for incremental implementations of distance transforms (DT) is presented: Incremental Distance Transforms (IDT). This scheme is applied on the cityblock, Chamfer, and three recent exact Euclidean DT (E2DT). A benchmark shows that for all five DT, the incremental implementation results in a significant speedup: 3.4×−10×. However, significant differences (i.e., up to 12.5×) among the DT remain present. The FEED transform, one of the recent E2DT, even showed to be faster than both city-block and Chamfer DT. So, through a very efficient incremental processing scheme for DT, a relief is found for E2DT’s computational burden

    Comments on "On Approximating Euclidean Metrics by Weighted t-Cost Distances in Arbitrary Dimension"

    Full text link
    Mukherjee (Pattern Recognition Letters, vol. 32, pp. 824-831, 2011) recently introduced a class of distance functions called weighted t-cost distances that generalize m-neighbor, octagonal, and t-cost distances. He proved that weighted t-cost distances form a family of metrics and derived an approximation for the Euclidean norm in Zn\mathbb{Z}^n. In this note we compare this approximation to two previously proposed Euclidean norm approximations and demonstrate that the empirical average errors given by Mukherjee are significantly optimistic in Rn\mathbb{R}^n. We also propose a simple normalization scheme that improves the accuracy of his approximation substantially with respect to both average and maximum relative errors.Comment: 7 pages, 1 figure, 3 tables. arXiv admin note: substantial text overlap with arXiv:1008.487

    Directed Exploration using a Modified Distance Transform

    Get PDF
    Mobile robots operating in unknown environments need to build maps. To do so they must have an exploration algorithm to plan a path. This algorithm should guarantee that the whole of the environment, or at least some designated area, will be mapped. The path should also be optimal in some sense and not simply a "random walk" which is clearly inefficient. When multiple robots are involved, the algorithm also needs to take advantage of the fact that the robots can share the task. In this paper we discuss a modification to the well-known distance transform that satisfies these requirements

    Optimum design of chamfer distance transforms

    Full text link

    Characterization of Posidonia Oceanica Seagrass Aerenchyma through Whole Slide Imaging: A Pilot Study

    Full text link
    Characterizing the tissue morphology and anatomy of seagrasses is essential to predicting their acoustic behavior. In this pilot study, we use histology techniques and whole slide imaging (WSI) to describe the composition and topology of the aerenchyma of an entire leaf blade in an automatic way combining the advantages of X-ray microtomography and optical microscopy. Paraffin blocks are prepared in such a way that microtome slices contain an arbitrarily large number of cross sections distributed along the full length of a blade. The sample organization in the paraffin block coupled with whole slide image analysis allows high throughput data extraction and an exhaustive characterization along the whole blade length. The core of the work are image processing algorithms that can identify cells and air lacunae (or void) from fiber strand, epidermis, mesophyll and vascular system. A set of specific features is developed to adequately describe the convexity of cells and voids where standard descriptors fail. The features scrutinize the local curvature of the object borders to allow an accurate discrimination between void and cell through machine learning. The algorithm allows to reconstruct the cells and cell membrane features that are relevant to tissue density, compressibility and rigidity. Size distribution of the different cell types and gas spaces, total biomass and total void volume fraction are then extracted from the high resolution slices to provide a complete characterization of the tissue along the leave from its base to the apex

    Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach

    Full text link
    The main aim of this work is the development of a vision-based road detection system fast enough to cope with the difficult real-time constraints imposed by moving vehicle applications. The hardware platform, a special-purpose massively parallel system, has been chosen to minimize system production and operational costs. This paper presents a novel approach to expectation-driven low-level image segmentation, which can be mapped naturally onto mesh-connected massively parallel SIMD architectures capable of handling hierarchical data structures. The input image is assumed to contain a distorted version of a given template; a multiresolution stretching process is used to reshape the original template in accordance with the acquired image content, minimizing a potential function. The distorted template is the process output.Comment: See http://www.jair.org/ for any accompanying file
    corecore