4,619 research outputs found

    The Knapsack Problem with Neighbour Constraints

    Get PDF
    We study a constrained version of the knapsack problem in which dependencies between items are given by the adjacencies of a graph. In the 1-neighbour knapsack problem, an item can be selected only if at least one of its neighbours is also selected. In the all-neighbours knapsack problem, an item can be selected only if all its neighbours are also selected. We give approximation algorithms and hardness results when the nodes have both uniform and arbitrary weight and profit functions, and when the dependency graph is directed and undirected.Comment: Full version of IWOCA 2011 pape

    Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets

    Full text link
    Consider the following problem: given a set system (U,I) and an edge-weighted graph G = (U, E) on the same universe U, find the set A in I such that the Steiner tree cost with terminals A is as large as possible: "which set in I is the most difficult to connect up?" This is an example of a max-min problem: find the set A in I such that the value of some minimization (covering) problem is as large as possible. In this paper, we show that for certain covering problems which admit good deterministic online algorithms, we can give good algorithms for max-min optimization when the set system I is given by a p-system or q-knapsacks or both. This result is similar to results for constrained maximization of submodular functions. Although many natural covering problems are not even approximately submodular, we show that one can use properties of the online algorithm as a surrogate for submodularity. Moreover, we give stronger connections between max-min optimization and two-stage robust optimization, and hence give improved algorithms for robust versions of various covering problems, for cases where the uncertainty sets are given by p-systems and q-knapsacks.Comment: 17 pages. Preliminary version combining this paper and http://arxiv.org/abs/0912.1045 appeared in ICALP 201

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

    Get PDF
    We study pattern matching problems on two major representations of uncertain sequences used in molecular biology: weighted sequences (also known as position weight matrices, PWM) and profiles (i.e., scoring matrices). In the simple version, in which only the pattern or only the text is uncertain, we obtain efficient algorithms with theoretically-provable running times using a variation of the lookahead scoring technique. We also consider a general variant of the pattern matching problems in which both the pattern and the text are uncertain. Central to our solution is a special case where the sequences have equal length, called the consensus problem. We propose algorithms for the consensus problem parameterized by the number of strings that match one of the sequences. As our basic approach, a careful adaptation of the classic meet-in-the-middle algorithm for the knapsack problem is used. On the lower bound side, we prove that our dependence on the parameter is optimal up to lower-order terms conditioned on the optimality of the original algorithm for the knapsack problem.Comment: 22 page
    • …
    corecore