3,116 research outputs found

    Chiral Rings, Anomalies and Electric-Magnetic Duality

    Full text link
    We study electric-magnetic duality in the chiral ring of a supersymmetric U(N_c) gauge theory with adjoint and fundamental matter, in presence of a general confining phase superpotential for the adjoint and the mesons. We find the magnetic solution corresponding to both the pseudoconfining and higgs electric vacua. By means of the Dijkgraaf-Vafa method, we match the effective glueball superpotentials and show that in some cases duality works exactly offshell. We give also a picture of the analytic structure of the resolvents in the magnetic theory, as we smoothly interpolate between different higgs vacua on the electric side.Comment: 54 pages, harvmac. v2: typos correcte

    Chiral Rings of Deconstructive [SU(n_c)]^N Quivers

    Full text link
    Dimensional deconstruction of 5D SQCD with general n_c, n_f and k_CS gives rise to 4D N=1 gauge theories with large quivers of SU(n_c) gauge factors. We construct the chiral rings of such [SU(n_c)]^N theories, off-shell and on-shell. Our results are broadly similar to the chiral rings of single U(n_c) theories with both adjoint and fundamental matter, but there are also some noteworthy differences such as nonlocal meson-like operators where the quark and antiquark fields belong to different nodes of the quiver. And because our gauge groups are SU(n_c) rather than U(n_c), our chiral rings also contain a whole zoo of baryonic and antibaryonic operators.Comment: 93 pages, LaTeX, PSTricks macros; 1 reference added in v

    Classical/quantum integrability in AdS/CFT

    Full text link
    We discuss the AdS/CFT duality from the perspective of integrable systems and establish a direct relationship between the dimension of single trace local operators composed of two types of scalar fields in N=4 super Yang-Mills and the energy of their dual semiclassical string states in AdS(5) X S(5). The anomalous dimensions can be computed using a set of Bethe equations, which for ``long'' operators reduces to a Riemann-Hilbert problem. We develop a unified approach to the long wavelength Bethe equations, the classical ferromagnet and the classical string solutions in the SU(2) sector and present a general solution, governed by complex curves endowed with meromorphic differentials with integer periods. Using this solution we compute the anomalous dimensions of these long operators up to two loops and demonstrate that they agree with string-theory predictions.Comment: 49 pages, 5 figures, LaTeX; v2: complete proof of the two-loop equivalence between the sigma model and the gauge theory is added. References added; v4,v5,v6: misprints correcte

    The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment

    Full text link
    We introduce the concepts of the Fourier transform and convolution generated by an arbitrary restriction of the differentiation operator in the space L2(0,b).L_{2}(0,b). In contrast to the classical convolution, the introduced convolution explicitly depends on the boundary condition that defines the domain of the operator L.L. The convolution is closely connected to the inverse operator or to the resolvent. So, we first find a representation for the resolvent, and then introduce the required convolution.Comment: 15 page

    Classical integrability in the BTZ black hole

    Full text link
    Using the fact the BTZ black hole is a quotient of AdS_3 we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. Finally we show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop.Comment: 45 pages, Reference added, typos corrected, discussion on geodesics improved to include all geodesic

    Universality of Nonperturbative Effect in Type 0 String Theory

    Full text link
    We derive the nonperturbative effect in type 0B string theory, which is defined by taking the double scaling limit of a one-matrix model with a two-cut eigenvalue distribution. However, the string equation thus derived cannot determine the nonperturbative effect completely, at least without specifying unknown boundary conditions. The nonperturbative contribution to the free energy comes from instantons in such models. We determine by direct computation in the matrix model an overall factor of the instanton contribution, which cannot be determined by the string equation itself. We prove that it is universal in the sense that it is independent of the detailed structure of potentials in the matrix model. It turns out to be a purely imaginary number and therefore can be interpreted as a quantity related to instability of the D-brane in type 0 string theory. We also comment on a relation between our result and boundary conditions for the string equation.Comment: 26 pages, LaTe
    corecore