8 research outputs found

    Non-Deterministic Finite Cover Automata

    Get PDF
    The concept of Deterministic Finite Cover Automata (DFCA) was introduced at WIA ’98, as a more compact representation than Deterministic Finite Automata (DFA) for finite languages. In some cases representing a finite language using a Non-deterministic Finite Automata (NFA) may significantly reduce the number of required states. The combined power of the succinctness of the representation of finite languages using both cover languages and non-determinism has been suggested, but never systematically studied. In the present paper, for non-deterministic finite cover automata (NFCA) and l-non-deterministic finite cover automaton (l-NFCA), we show that minimization can be as hard as minimizing NFAs for regular languages, even in the case of NFCAs using unary alphabets. Moreover, we show how we can adapt the methods used to reduce, or minimize the size of NFAs/DFCAs/l-DFCAs, for simplifying NFCAs/l-NFCAs

    Decomposition and Descriptional Complexity of Shuffle on Words and Finite Languages

    Get PDF
    We investigate various questions related to the shuffle operation on words and finite languages. First we investigate a special variant of the shuffle decomposition problem for regular languages, namely, when the given regular language is the shuffle of finite languages. The shuffle decomposition into finite languages is, in general not unique. Thatis,therearelanguagesL^,L2,L3,L4withLiluL2= £3luT4but{L\,L2}^ {I/3, L4}. However, if all four languages are singletons (with at least two combined letters), it follows by a result of Berstel and Boasson [6], that the solution is unique; that is {L\,L2} = {L3,L4}. We extend this result to show that if L\ and L2 are arbitrary finite sets and Lz and Z-4 are singletons (with at least two letters in each), the solution is unique. This is as strong as it can be, since we provide examples showing that the solution can be non-unique already when (1) both L\ and L2 are singleton sets over different unary alphabets; or (2) L\ contains two words and L2 is singleton. We furthermore investigate the size of shuffle automata for words. It was shown by Campeanu, K. Salomaa and Yu in [11] that the minimal shuffle automaton of two regular languages requires 2mn states in the worst case (where the minimal automata of the two component languages had m and n states, respectively). It was also recently shown that there exist words u and v such that the minimal shuffle iii DFA for u and v requires an exponential number of states. We study the size of shuffle DFAs for restricted cases of words, namely when the words u and v are both periods of a common underlying word. We show that, when the underlying word obeys certain conditions, then the size of the minimal shuffle DFA for u and v is at most quadratic. Moreover we provide an efficient algorithm, which decides for a given DFA A and two words u and v, whether u lu u C L(A)

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field
    corecore