307 research outputs found

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    An Alternative Natural Deduction for the Intuitionistic Propositional Logic

    Get PDF
    A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.This work is supported by the Ministary of Science and Technology of Serbia, grant number ON174026

    Mendler-style Iso-(Co)inductive predicates: a strongly normalizing approach

    Full text link
    We present an extension of the second-order logic AF2 with iso-style inductive and coinductive definitions specifically designed to extract programs from proofs a la Krivine-Parigot by means of primitive (co)recursion principles. Our logic includes primitive constructors of least and greatest fixed points of predicate transformers, but contrary to the common approach, we do not restrict ourselves to positive operators to ensure monotonicity, instead we use the Mendler-style, motivated here by the concept of monotonization of an arbitrary operator on a complete lattice. We prove an adequacy theorem with respect to a realizability semantics based on saturated sets and saturated-valued functions and as a consequence we obtain the strong normalization property for the proof-term reduction, an important feature which is absent in previous related work.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    Proof Terms for Generalized Natural Deduction

    Get PDF
    In previous work it has been shown how to generate natural deduction rules for propositional connectives from truth tables, both for classical and constructive logic. The present paper extends this for the constructive case with proof-terms, thereby extending the Curry-Howard isomorphism to these new connectives. A general notion of conversion of proofs is defined, both as a conversion of derivations and as a reduction of proof-terms. It is shown how the well-known rules for natural deduction (Gentzen, Prawitz) and general elimination rules (Schroeder-Heister, von Plato, and others), and their proof conversions can be found as instances. As an illustration of the power of the method, we give constructive rules for the nand logical operator (also called Sheffer stroke). As usual, conversions come in two flavours: either a detour conversion arising from a detour convertibility, where an introduction rule is immediately followed by an elimination rule, or a permutation conversion arising from an permutation convertibility, an elimination rule nested inside another elimination rule. In this paper, both are defined for the general setting, as conversions of derivations and as reductions of proof-terms. The properties of these are studied as proof-term reductions. As one of the main contributions it is proved that detour conversion is strongly normalizing and permutation conversion is strongly normalizing: no matter how one reduces, the process eventually terminates. Furthermore, the combination of the two conversions is shown to be weakly normalizing: one can always reduce away all convertibilities

    Curry-Howard-Lambek Correspondence for Intuitionistic Belief

    Get PDF
    This paper introduces a natural deduction calculus for intuitionistic logic of belief IEL\mathsf{IEL}^{-} which is easily turned into a modal λ\lambda-calculus giving a computational semantics for deductions in IEL\mathsf{IEL}^{-}. By using that interpretation, it is also proved that IEL\mathsf{IEL}^{-} has good proof-theoretic properties. The correspondence between deductions and typed terms is then extended to a categorical semantics for identity of proofs in IEL\mathsf{IEL}^{-} showing the general structure of such a modality for belief in an intuitionistic framework.Comment: Submitted to Studia Logica on January 31st, 202

    Proofs and Refutations for Intuitionistic and Second-Order Logic

    Get PDF
    The ?^{PRK}-calculus is a typed ?-calculus that exploits the duality between the notions of proof and refutation to provide a computational interpretation for classical propositional logic. In this work, we extend ?^{PRK} to encompass classical second-order logic, by incorporating parametric polymorphism and existential types. The system is shown to enjoy good computational properties, such as type preservation, confluence, and strong normalization, which is established by means of a reducibility argument. We identify a syntactic restriction on proofs that characterizes exactly the intuitionistic fragment of second-order ?^{PRK}, and we study canonicity results

    Natural deduction for intuitionistic linear logic

    Get PDF
    AbstractThe paper deals with two versions of the fragment with unit, tensor, linear implication and storage operator (the exponential!) of intuitionistic linear logic. The first version, ILL, appears in a paper by Benton, Bierman, Hyland and de Paiva; the second one, ILL+, is described in this paper. ILL has a contraction rule and an introduction rule !I for the exponential; in ILL+, instead of a contraction rule, multiple occurrences of labels for assumptions are permitted under certain conditions; moreover, there is a different introduction rule for the exponential, !I+, which is closer in spirit to the necessitation rule for the normalizable version of S4 discussed by Prawitz in his monograph “Natural Deduction”.It is relatively easy to adapt Prawitz's treatment of natural deduction for intuitionistic logic to ILL+; in particular one can formulate a notion of strong validity (as in Prawitz's “Ideas and Results in Proof Theory”) permitting a proof of strong normalization.The conversion rules for ILL explicitly mentioned in the paper by Benton et al. do not suffice for normal forms with subformula property, but we can show that this can be remedied by addition of a special permutation conversion plus some “satellite” permutation conversions.Some discussion of the categorical models which might correspond to ILL+ is given
    corecore