198 research outputs found

    Hypothesis Testing For Network Data in Functional Neuroimaging

    Get PDF
    In recent years, it has become common practice in neuroscience to use networks to summarize relational information in a set of measurements, typically assumed to be reflective of either functional or structural relationships between regions of interest in the brain. One of the most basic tasks of interest in the analysis of such data is the testing of hypotheses, in answer to questions such as "Is there a difference between the networks of these two groups of subjects?" In the classical setting, where the unit of interest is a scalar or a vector, such questions are answered through the use of familiar two-sample testing strategies. Networks, however, are not Euclidean objects, and hence classical methods do not directly apply. We address this challenge by drawing on concepts and techniques from geometry, and high-dimensional statistical inference. Our work is based on a precise geometric characterization of the space of graph Laplacian matrices and a nonparametric notion of averaging due to Fr\'echet. We motivate and illustrate our resulting methodologies for testing in the context of networks derived from functional neuroimaging data on human subjects from the 1000 Functional Connectomes Project. In particular, we show that this global test is more statistical powerful, than a mass-univariate approach. In addition, we have also provided a method for visualizing the individual contribution of each edge to the overall test statistic.Comment: 34 pages. 5 figure

    Preferential flow phenomena in partially-saturated porous media

    Get PDF

    Classification of problematic subgroups of U(n)

    Full text link
    We classify p-toral subgroups of U(n) that can have non-contractible fixed points under the action of U(n) on the complex of partitions of complex n-space into mutually orthogonal subspaces.Comment: 50 pages. Minor expansion of the previous version, adding material on homotopy fixed points and pushout square

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Sensor Selection in High-Dimensional Gaussian Trees with Nuisances

    Get PDF
    We consider the sensor selection problem on multivariate Gaussian distributions where only a \emph{subset} of latent variables is of inferential interest. For pairs of vertices connected by a unique path in the graph, we show that there exist decompositions of nonlocal mutual information into local information measures that can be computed efficiently from the output of message passing algorithms. We integrate these decompositions into a computationally efficient greedy selector where the computational expense of quantification can be distributed across nodes in the network. Experimental results demonstrate the comparative efficiency of our algorithms for sensor selection in high-dimensional distributions. We additionally derive an online-computable performance bound based on augmentations of the relevant latent variable set that, when such a valid augmentation exists, is applicable for \emph{any} distribution with nuisances.United States. Defense Advanced Research Projects Agency (Mathematics of Sensing, Exploitation and Execution

    Distance Degree Regular Graphs and Theireccentric Digraphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G.The distance degree sequence (dds) of a vertex v in a graph G = (V,E) is a list of the number of vertices at distance 1, 2, . . . , e(u) in that order, where e(u) denotes the eccentricity of v in G. Thus the sequence (di0 , di1 , di2 , . . . , dij , . . .) is the dds of the vertex vi in G where dij denotes number of vertices at distance j from vi. A graph is distance degree regular (DDR) graph if all vertices have the same dds. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we consider the construction of new families of DDR graphs with arbitrary diameter. Also we consider some special class of DDR graphs in relation with eccentric digraph of a graph. Different structural properties of eccentric digraphs of DDR graphs are dealt herewith
    • …
    corecore