980 research outputs found

    Grilliot's trick in Nonstandard Analysis

    Full text link
    The technique known as Grilliot's trick constitutes a template for explicitly defining the Turing jump functional (∃2)(\exists^2) in terms of a given effectively discontinuous type two functional. In this paper, we discuss the standard extensionality trick: a technique similar to Grilliot's trick in Nonstandard Analysis. This nonstandard trick proceeds by deriving from the existence of certain nonstandard discontinuous functionals, the Transfer principle from Nonstandard analysis limited to Π10\Pi_1^0-formulas; from this (generally ineffective) implication, we obtain an effective implication expressing the Turing jump functional in terms of a discontinuous functional (and no longer involving Nonstandard Analysis). The advantage of our nonstandard approach is that one obtains effective content without paying attention to effective content. We also discuss a new class of functionals which all seem to fall outside the established categories. These functionals directly derive from the Standard Part axiom of Nonstandard Analysis.Comment: 21 page

    The computational content of Nonstandard Analysis

    Get PDF
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very large scope. In particular, we will observe that this scope includes any theorem of pure Nonstandard Analysis, where `pure' means that only nonstandard definitions (and not the epsilon-delta kind) are used. In this note, we survey results in analysis, computability theory, and Reverse Mathematics.Comment: In Proceedings CL&C 2016, arXiv:1606.0582

    A functional interpretation for nonstandard arithmetic

    Get PDF
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Goedel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of extensional Heyting and Peano arithmetic in all finite types, strengthening earlier results by Moerdijk, Palmgren, Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the paper, we will point out some open problems and directions for future research and mention some initial results on saturation principles

    The rapid points of a complex oscillation

    Full text link
    By considering a counting-type argument on Brownian sample paths, we prove a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid points of Brownian motion. Because of the nature of the proof we can then apply the concepts to so-called complex oscillations (or 'algorithmically random Brownian motion'), showing that their rapid points have the same dimension.Comment: 11 page
    • …
    corecore