144 research outputs found

    Stokes' first problem for some non-Newtonian fluids: Results and mistakes

    Full text link
    The well-known problem of unidirectional plane flow of a fluid in a half-space due to the impulsive motion of the plate it rests upon is discussed in the context of the second-grade and the Oldroyd-B non-Newtonian fluids. The governing equations are derived from the conservation laws of mass and momentum and three correct known representations of their exact solutions given. Common mistakes made in the literature are identified. Simple numerical schemes that corroborate the analytical solutions are constructed.Comment: 10 pages, 2 figures; accepted for publication in Mechanics Research Communications; v2 corrects a few typo

    Generalized solutions in PDEs and the Burgers' equation

    Get PDF
    In many situations, the notion of function is not sufficient and it needs to be extended. A classical way to do this is to introduce the notion of weak solution; another approach is to use generalized functions. Ultrafunctions are a particular class of generalized functions that has been previously introduced and used to define generalized solutions of stationary problems in [4,7,9,11,12]. In this paper we generalize this notion in order to study also evolution problems. In particular, we introduce the notion of Generalized Ultrafunction Solution (GUS) for a large family of PDEs, and we confront it with classical strong and weak solutions. Moreover, we prove an existence and uniqueness result of GUS's for a large family of PDEs, including the nonlinear Schroedinger equation and the nonlinear wave equation. Finally, we study in detail GUS's of Burgers' equation, proving that (in a precise sense) the GUS's of this equation provide a description of the phenomenon at microscopic level

    Fourier Neural Operator for Parametric Partial Differential Equations

    Get PDF
    The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance compared to existing neural network methodologies and it is up to three orders of magnitude faster compared to traditional PDE solvers

    Mathematical Aspects of Hydrodynamics

    Get PDF
    The workshop dealt with the partial differential equations that describe fluid motion and related topics. These topics included both inviscid and viscous fluids in two and three dimensions. Some talks addressed aspects of fluid dynamics such as the construction of wild weak solutions, compressible shock formation, inviscid limit and behavior of boundary layers, as well as both polymer/fluid and structure/fluid interaction

    On the Resolution of Critical Flow Regions in Inviscid Linear And Nonlinear Instability Calculations

    Get PDF
    Numerical methods for tackling the inviscid instability problem are discussed. Convergence is demon- strated to be a necessary, but not a sufficient condition for accuracy. Inviscid flow physics set requirements regarding grid-point distribution in order for physically accurate results to be obtained. These requirements are relevant to the viscous problem also and are shown to be related to the resolution of the critical layers. In this respect, high-resolution nonlinear calculations based on the inviscid initial-boundary-value problem are presented for a model shear-layer flow, aiming at identification of the regions that require attention in the course of high-Reynolds-number viscous calculations. The results bear a remarkable resemblance with those pertinent to viscous flow, with a cascade of high-shear regions being shed towards the vortex-core centre as time progresses. In parallel, numerical instability related to the finite-time singularity of the nonlinear equations solved globally contaminates and eventually destroys the simulations, irrespective of resolution

    Boundary Control for an Arterial System

    Full text link

    Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts

    Full text link
    We show that G\"odel's negative results concerning arithmetic, which date back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites paradox") pose the questions of the use of fuzzy sets and of the effect of a measuring device on the experiment. The consideration of these facts led, in thermodynamics, to a new one-parameter family of ideal gases. In turn, this leads to a new approach to probability theory (including the new notion of independent events). As applied to economics, this gives the correction, based on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are added. arXiv admin note: significant text overlap with arXiv:1111.610
    • …
    corecore