7,798 research outputs found

    Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    Full text link
    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.Comment: 14 pages, 15 figures, 4 tables, accepted to appear on IEEE Transactions on Signal Processing, Sept. 201

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages

    Get PDF
    This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times

    Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections

    Full text link
    Wireless sensor networks (WSNs) have attracted considerable attention in recent years and motivate a host of new challenges for distributed signal processing. The problem of distributed or decentralized estimation has often been considered in the context of parametric models. However, the success of parametric methods is limited by the appropriateness of the strong statistical assumptions made by the models. In this paper, a more flexible nonparametric model for distributed regression is considered that is applicable in a variety of WSN applications including field estimation. Here, starting with the standard regularized kernel least-squares estimator, a message-passing algorithm for distributed estimation in WSNs is derived. The algorithm can be viewed as an instantiation of the successive orthogonal projection (SOP) algorithm. Various practical aspects of the algorithm are discussed and several numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, July 31 - August 4, 200

    Online Nonparametric Anomaly Detection based on Geometric Entropy Minimization

    Full text link
    We consider the online and nonparametric detection of abrupt and persistent anomalies, such as a change in the regular system dynamics at a time instance due to an anomalous event (e.g., a failure, a malicious activity). Combining the simplicity of the nonparametric Geometric Entropy Minimization (GEM) method with the timely detection capability of the Cumulative Sum (CUSUM) algorithm we propose a computationally efficient online anomaly detection method that is applicable to high-dimensional datasets, and at the same time achieve a near-optimum average detection delay performance for a given false alarm constraint. We provide new insights to both GEM and CUSUM, including new asymptotic analysis for GEM, which enables soft decisions for outlier detection, and a novel interpretation of CUSUM in terms of the discrepancy theory, which helps us generalize it to the nonparametric GEM statistic. We numerically show, using both simulated and real datasets, that the proposed nonparametric algorithm attains a close performance to the clairvoyant parametric CUSUM test.Comment: to appear in IEEE International Symposium on Information Theory (ISIT) 201

    Change point localization in dependent dynamic nonparametric random dot product graphs

    Get PDF
    In this paper, we study the change point localization problem in a sequence of dependent nonparametric random dot product graphs. To be specific, assume that at every time point, a network is generated from a nonparametric random dot product graph model (see e.g. Athreya et al., 2017), where the latent positions are generated from unknown underlying distributions. The underlying distributions are piecewise constant in time and change at unknown locations, called change points. Most importantly, we allow for dependence among networks generated between two consecutive change points. This setting incorporates edge-dependence within networks and temporal dependence between networks, which is the most flexible setting in the published literature. To accomplish the task of consistently localizing change points, we propose a novel change point detection algorithm, consisting of two steps. First, we estimate the latent positions of the random dot product model, our theoretical result being a refined version of the state-of-the-art results, allowing the dimension of the latent positions to grow unbounded. Subsequently, we construct a nonparametric version of the CUSUM statistic (Page, 1954, Padilla et al., 2019) that allows for temporal dependence. Consistent localization is proved theoretically and supported by extensive numerical experiments, which illustrate state-of-the-art performance. We also provide in depth discussion of possible extensions to give more understanding and insights
    corecore