787 research outputs found

    Formation of Multiple Groups of Mobile Robots Using Sliding Mode Control

    Full text link
    Formation control of multiple groups of agents finds application in large area navigation by generating different geometric patterns and shapes, and also in carrying large objects. In this paper, Centroid Based Transformation (CBT) \cite{c39}, has been applied to decompose the combined dynamics of wheeled mobile robots (WMRs) into three subsystems: intra and inter group shape dynamics, and the dynamics of the centroid. Separate controllers have been designed for each subsystem. The gains of the controllers are such chosen that the overall system becomes singularly perturbed system. Then sliding mode controllers are designed on the singularly perturbed system to drive the subsystems on sliding surfaces in finite time. Negative gradient of a potential based function has been added to the sliding surface to ensure collision avoidance among the robots in finite time. The efficacy of the proposed controller is established through simulation results.Comment: 8 pages, 5 figure

    Formation Control of Nonholonomic Multi-Agent Systems

    Get PDF
    This dissertation is concerned with the formation control problem of multiple agents modeled as nonholonomic wheeled mobile robots. Both kinematic and dynamic robot models are considered. Solutions are presented for a class of formation problems that include formation, maneuvering, and flocking. Graph theory and nonlinear systems theory are the key tools used in the design and stability analysis of the proposed control schemes. Simulation and/or experimental results are presented to illustrate the performance of the controllers. In the first part, we present a leader-follower type solution to the formation maneuvering problem. The solution is based on the graph that models the coordination among the robots being a spanning tree. Our control law incorporates two types of position errors: individual tracking errors and coordination errors for leader-follower pairs in the spanning tree. The control ensures that the robots globally acquire a given planar formation while the formation as a whole globally tracks a desired trajectory, both with uniformly ultimately bounded errors. The control law is first designed at the kinematic level and then extended to the dynamic level. In the latter, we consider that parametric uncertainty exists in the equations of motion. These uncertainties are accounted for by employing an adaptive control scheme. In the second part, we design a distance-based control scheme for the flocking of the nonholonomic agents under the assumption that the desired flocking velocity is known to all agents. The control law is designed at the kinematic level and is based on the rigidity properties of the graph modeling the sensing/control interactions among the robots. A simple input transformation is used to facilitate the control design by converting the nonholonomic model into the single-integrator equation. The resulting control ensures exponential convergence to the desired formation while the formation maneuvers according to a desired, time-varying translational velocity. In the third part, we extend the previous flocking control framework to the case where only a subset of the agents know the desired flocking velocity. The resulting controllers include distributed observers to estimate the unknown quantities. The theory of interconnected systems is used to analyze the stability of the observer-controller system

    Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and experiments

    Get PDF
    In this work we show the Lyapunov stability and convergence of an adaptive and decentralized coverage control for a team of mobile sensors. This new approach assumes nonholonomic sensors rather than the usual holonomic sensors found in the literature. The kinematics of the unicycle model and a nonlinear control law in polar coordinates are used in order to prove the stability of the controller applied over a team of mobile sensors. This controller is adaptive, which means that the mobile sensors are able to estimate and map a density function in the sampling space without a previous knowledge of the environment. The controller is decentralized, which means that each mobile sensor has its own estimate and computes its own control input based on local information. In order to guarantee the estimate convergence, the mobile sensors implement a consensus protocol in continuous time assuming a fixed network topology and zero communication delays. The convergence and feasibility of the coverage control algorithm are verified through simulations in Matlab and Stage. The Matlab simulations consider only the kinematics of the mobile sensors and the Stage simulations consider the dynamics and the kinematics of the sensors. The Matlab simulations show successful results since the sensor network carries out the coverage task and distributes itself over the estimated density function. The adaptive law which is defined by a differential equation must be approximated by a difference equation to be implementable in Stage. The Stage simulations show positive results, however, the system is not able to achieve an accurate estimation of the density function. In spite of that, the sensors carry out the coverage task distributing themselves over the sampling space. Furthermore, some experiments are carried out using a team of four Pioneer 3-AT robots sensing a piecewise constant light distribution function. The experimental results are satisfactory since the robots carry out the coverage task. However, the accuracy of the estimation is affected by the approximation of the adaptation law by difference equations, the number of robots and sensor sensitivity. Based on the results of this research, the decentralized adaptive coverage control for nonholonomic vehicles has been analyzed from a theoretical approach and validated through simulation and experimentation with positive results. As a future work we will investigate: (i) new techniques to improve the implementation of the adaptive law in real time,(ii) the consideration of the dynamics of the mobile sensors, and (iii) the stability and convergence of the adaptive law for continuous-time variant density function

    Adaptive consensus based formation control of unmanned vehicles

    Get PDF
    Over the past decade, the control research community has given significant attention to formation control of multiple unmanned vehicles due to a variety of commercial and defense applications. Consensus-based formation control is considered to be more robust and reliable when compared to other formation control methods due to scalability and inherent properties that enable the formation to continue even if one of the vehicles experiences a failure. In contrast to existing methods on formation control where the dynamics of the vehicles are neglected, this dissertation in the form of four papers presents consensus-based formation control of unmanned vehicles-both ground and aerial, by incorporating the vehicle dynamics. First, neural networks (NN)-based optimal adaptive consensus-based formation control over finite horizon is presented for networked mobile robots or agents in the presence of uncertain robot/agent dynamics and communication. In the second paper, a hybrid automaton is proposed to control the nonholonomic mobile robots in two discrete modes: a regulation mode and a formation keeping mode in order to overcome well-known stabilization problem. The third paper presents the design of a distributed consensus-based event-triggered formation control of networked mobile robots using NN in the presence of uncertain robot dynamics to minimize communication. All these papers assume state availability. Finally, the fourth paper extends the consensus effort by introducing the development of a novel nonlinear output feedback NN-based controller for a group of quadrotor UAVs --Abstract, page iv

    Arbitrary Configuration Stabilization Control for Nonholonomic Vehicle with Input Saturation:a c-Nonholonomic Trajectory Approach

    Get PDF
    This paper addresses the saturated stabilization control problem for nonholonomic vehicles with a novel c-nonholonomic trajectory approach on SE(2), with applications to automatic parking. Firstly, by defining the cnonholonomic configuration, a c-nonholonomic trajectory is obtained which provides a novel approach to design stabilization controller to reach an arbitrary configuration. Secondly, a global discontinuous time-invariant feedback controller with input saturation is proposed which does not involve time signal information, and its convergence is illustrated by a Lyapunov function approach. Thereafter, the motion trajectory of the proposed controller is analyzed, and the application scenario in automatic parking with the approximate desired trajectory is demonstrated. Finally, the performance of the proposed controller is validated by both numerical simulations and experiments.</p
    • …
    corecore