40,454 research outputs found

    Sequential Bayesian inference for static parameters in dynamic state space models

    Full text link
    A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is based on the observation that many dynamic state space models have a relatively small number of static parameters (or hyper-parameters), so that in principle the posterior can be computed and stored on a discrete grid of practical size which can be tracked dynamically. Further to this, this approach is able to use any existing methodology which computes the filtering and prediction distributions of the state process. Kalman filter and its extensions to non-linear/non-Gaussian situations have been used in this paper. This is illustrated using several applications: linear Gaussian model, Binomial model, stochastic volatility model and the extremely non-linear univariate non-stationary growth model. Performance has been compared to both existing on-line method and off-line methods

    Data-based mechanistic modelling, forecasting, and control.

    Get PDF
    This article briefly reviews the main aspects of the generic data based mechanistic (DBM) approach to modeling stochastic dynamic systems and shown how it is being applied to the analysis, forecasting, and control of environmental and agricultural systems. The advantages of this inductive approach to modeling lie in its wide range of applicability. It can be used to model linear, nonstationary, and nonlinear stochastic systems, and its exploitation of recursive estimation means that the modeling results are useful for both online and offline applications. To demonstrate the practical utility of the various methodological tools that underpin the DBM approach, the article also outlines several typical, practical examples in the area of environmental and agricultural systems analysis, where DBM models have formed the basis for simulation model reduction, control system design, and forecastin

    Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression

    Full text link
    In this paper, we revisit batch state estimation through the lens of Gaussian process (GP) regression. We consider continuous-discrete estimation problems wherein a trajectory is viewed as a one-dimensional GP, with time as the independent variable. Our continuous-time prior can be defined by any nonlinear, time-varying stochastic differential equation driven by white noise; this allows the possibility of smoothing our trajectory estimates using a variety of vehicle dynamics models (e.g., `constant-velocity'). We show that this class of prior results in an inverse kernel matrix (i.e., covariance matrix between all pairs of measurement times) that is exactly sparse (block-tridiagonal) and that this can be exploited to carry out GP regression (and interpolation) very efficiently. When the prior is based on a linear, time-varying stochastic differential equation and the measurement model is also linear, this GP approach is equivalent to classical, discrete-time smoothing (at the measurement times); when a nonlinearity is present, we iterate over the whole trajectory to maximize accuracy. We test the approach experimentally on a simultaneous trajectory estimation and mapping problem using a mobile robot dataset.Comment: Submitted to Autonomous Robots on 20 November 2014, manuscript # AURO-D-14-00185, 16 pages, 7 figure

    System identification, time series analysis and forecasting:The Captain Toolbox handbook.

    Get PDF
    CAPTAIN is a MATLAB compatible toolbox for non stationary time series analysis, system identification, signal processing and forecasting, using unobserved components models, time variable parameter models, state dependent parameter models and multiple input transfer function models. CAPTAIN also includes functions for true digital control
    • …
    corecore