610 research outputs found

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Geometric soft robotics: a finite element approach

    Get PDF
    Enabling remote semi-autonomous operations in hazardous environments is a challenging technological problem, given the difficulty to access in confined and constrained spaces using classical robotic systems. Inspired by biological trunks and tentacles, soft continuum robots constitute a possible solution to this problem, for their ability to traverse confined spaces, manipulate objects in complex environments, and conform their shape to nonlinear curvilinear paths. The need of reaching difficult-to-access industrial sites for maintenance and inspection procedures or anatomical sites for less invasive robotic surgery mainly motivates the current research. Despite the recent advances in the design and fabrication of soft robots, the community still suffers for the lack of a consolidate modeling framework for simulating their mechanical behavior. Such a modeling framework is the necessary condition for developing new physical design and control strategies, as well as path planning algorithms. Indeed, despite their appreciable features, soft robots usually generate undesired vibrations during normal procedures. This is one of the main reasons which still limits their potentially wide use in real scenario. Realistic modeling frameworks might leverage the development of model-based predictive controllers to compensate for the undesired vibrations, as well as design concepts and optimized trajectories to avoid the excitation of the vibration modes of the mechanical structure. The main objective of the thesis is to develop a unified mathematical framework for simulating the mechanical behavior of soft continuum robotic manipulators, which can also accommodate the dynamic simulation of classical rigid robots. The computer implementation of this theoretical framework leads to the development of SimSOFT, a physics engine for soft robots. The formulation has been validated through literature benchmark and some applications are presented. One of the major strengths of the framework is that it can accommodate the realistic simulation of kinematic trees or loops constituted either by rigid or soft arms connected by rigid or flexible joints.The simulation of hybrid mechanisms, composed by classical rigid kinematic chains and soft continuum manipulators, which can be used to have larger dexterity in smaller workspaces, as they are easily to miniaturize, is thus possible. To the best of the author's knowledge, the mathematical models developed in the thesis constitute the first attempt in the robotics community towards a unified framework for the dynamics of soft continuum multibody systems

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Energy shaping control of soft continuum manipulators with in-plane disturbances

    Get PDF
    Soft continuum manipulators offer levels of compliance and inherent safety that can render thema superior alternative to conventional rigid robotsfor a variety of tasks, such as medical interventions or human-robot interaction. However, the ability of soft continuum manipulators to compensate external disturbances need to be further enhanced to meet the stringent requirements of many practical applications.In this paper, we investigate the control problem forsoft continuum manipulators that consist of one inextensible segmentof constant section, which bends under the effect of the internal pressure and is subject to unknown disturbances acting in the plane of bending. A rigid-link model of the manipulatorwith a single input pressureis employed for control purposes and an energy-shaping approach isproposedto derive thecontrol law. A method for the adaptive estimation of disturbances is detailed and a disturbance compensation strategy is proposed.Finally, the effectiveness of the controlleris demonstrated with simulations and with experiments on an inextensible soft continuum manipulator that employs pneumatic actuation

    From Differential Geometry of Curves to Helical Kinematics of Continuum Robots Using Exponential Mapping

    Get PDF
    Kinematic modeling of continuum robots is challenging due to the large deflections that these systems usually undergone. In this paper, we derive the kinematics of a continuum robot from the evolution of a three-dimensional curve in space. We obtain the spatial configuration of a continuum robot in terms of exponential coordinates based on Lie group theory. This kinematic framework turns out to handle robotic helical shapes, i.e. spatial configurations with constant curvature and torsion of the arm

    Stochastic Approach for Modeling a Soft Robotic Finger with Creep Behavior

    Full text link
    Soft robots have high adaptability and safeness which are derived from their softness, and therefore it is paid attention to use them in human society. However, the controllability of soft robots is not enough to perform dexterous behaviors when considering soft robots as alternative laborers for humans. The model-based control is effective to achieve dexterous behaviors. When considering building a model which is suitable for control, there are problems based on their special properties such as the creep behavior or the variability of motion. In this paper, the lumped parameterized model with viscoelastic joints for a soft finger is established for the creep behavior. Parameters are expressed as distributions, which makes it possible to take into account the variability of motion. Furthermore, stochastic analyses are performed based on the parameters' distribution. They show high adaptivity compared with experimental results and also enable the investigation of the effects of parameters for robots' variability.Comment: 17 pages, 8 figures. This is a preprint of an article submitted for consideration in Advanced Robotics, copyright Taylor & Francis and Robotics Society of Japan; Advanced Robotics is available online at http://www.tandfonline.com

    TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the evergrowing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed
    • …
    corecore