47,535 research outputs found

    A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs

    Full text link
    We consider the probabilistic numerical scheme for fully nonlinear PDEs suggested in \cite{cstv}, and show that it can be introduced naturally as a combination of Monte Carlo and finite differences scheme without appealing to the theory of backward stochastic differential equations. Our first main result provides the convergence of the discrete-time approximation and derives a bound on the discretization error in terms of the time step. An explicit implementable scheme requires to approximate the conditional expectation operators involved in the discretization. This induces a further Monte Carlo error. Our second main result is to prove the convergence of the latter approximation scheme, and to derive an upper bound on the approximation error. Numerical experiments are performed for the approximation of the solution of the mean curvature flow equation in dimensions two and three, and for two and five-dimensional (plus time) fully-nonlinear Hamilton-Jacobi-Bellman equations arising in the theory of portfolio optimization in financial mathematics

    C-Integrability Test for Discrete Equations via Multiple Scale Expansions

    Full text link
    In this paper we are extending the well known integrability theorems obtained by multiple scale techniques to the case of linearizable difference equations. As an example we apply the theory to the case of a differential-difference dispersive equation of the Burgers hierarchy which via a discrete Hopf-Cole transformation reduces to a linear differential difference equation. In this case the equation satisfies the A1A_1, A2A_2 and A3A_3 linearizability conditions. We then consider its discretization. To get a dispersive equation we substitute the time derivative by its symmetric discretization. When we apply to this nonlinear partial difference equation the multiple scale expansion we find out that the lowest order non-secularity condition is given by a non-integrable nonlinear Schr\"odinger equation. Thus showing that this discretized Burgers equation is neither linearizable not integrable

    Currents and finite elements as tools for shape space

    Full text link
    The nonlinear spaces of shapes (unparameterized immersed curves or submanifolds) are of interest for many applications in image analysis, such as the identification of shapes that are similar modulo the action of some group. In this paper we study a general representation of shapes that is based on linear spaces and is suitable for numerical discretization, being robust to noise. We develop the theory of currents for shape spaces by considering both the analytic and numerical aspects of the problem. In particular, we study the analytical properties of the current map and the HsH^{-s} norm that it induces on shapes. We determine the conditions under which the current determines the shape. We then provide a finite element discretization of the currents that is a practical computational tool for shapes. Finally, we demonstrate this approach on a variety of examples

    Feedback Stabilization Methods for the Numerical Solution of Systems of Ordinary Differential Equations

    Get PDF
    In this work we study the problem of step size selection for numerical schemes, which guarantees that the numerical solution presents the same qualitative behavior as the original system of ordinary differential equations, by means of tools from nonlinear control theory. Lyapunov-based and Small-Gain feedback stabilization methods are exploited and numerous illustrating applications are presented for systems with a globally asymptotically stable equilibrium point. The obtained results can be used for the control of the global discretization error as well.Comment: 33 pages, 9 figures. Submitted for possible publication to BIT Numerical Mathematic
    corecore